2 mil

NASA TECHNICAL MEMORANDUM

VASA TM X- 62,245

COMPUTER SIMULATION OF AIRCRAFT MOTIONS AND PROPULSION SYSTEM DYNAMICS FOR THE YF-12 AIRCRAFT AT SUPERSONIC CRUISE CONDITIONS

Stuart C. Brown

(NASA-TM-X-62245) COMPUTER SIMULATION OF AIRCRAFT MOTIONS AND PROPULSION SYSTEM DYNAMICS FOR THE YF-12 AIRCRAFT AT SUPERSONIC CRUISE CONDITIONS (NASA) 65 p HC \$5.25 CSCL 01C

N73-28990

Unclas G3/02 13462

Ames Research Center Moffett Field, Calif. 94035

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield, VA. 22151

August 1973

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
THE BEST COPY FURNISHED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

COMPUTER SIMULATION OF AIRCRAFT MOTIONS AND PROPULSION SYSTEM DYNAMICS FOR THE YF~12 AIRCRAFT AT SUPERSONIC CRUISE CONDITIONS

Stuart C. Brown

Ames Research Center

SUMMARY

This report describes a computer simulation of the YF-12 aircraft motions and propulsion system dynamics. The aircraft is a delta-wing twin-engine type which is capable of cruising at high altitudes and supersonic Mach numbers and the simulation is intended to represent the aircraft and its systems for these conditions. The propulsion system was represented in sufficient detail so that interactions between aircraft motions and the propulsion system dynamics could be investigated.

Six degree-of-freedom aircraft motions together with the three-axis stability augmentation system were represented. The mixed compression inlets and their controls were represented in the started mode for a range of flow conditions up to the inlet unstart boundary. Effects of inlet moving geometry on aircraft forces and movements as well as effects of aircraft motions on the inlet behavior were simulated. The engines, which are straight turbojets, were represented in the afterburning mode, with effects of changes in aircraft flight conditions included. The simulation was capable of operating in real time.

INTRODUCTION

One portion of the overall NASA YF-12 research program is directed toward investigations of interactions between aircraft motions and elements of the propulsion system during high-altitude supersonic cruise conditions. The program includes flight test, wind tunnel, and control investigations. These interactions become of increased importance for aircraft with mixed-compression inlets such as those used on the YF-12. While the mixed-compression inlet is the most efficient type for Mach numbers greater than about 2.2, the inlet is quite sensitive to aircraft motions and the resulting flow changes. Furthermore, precise control of its moving geometry is required to achieve this design efficiency. This report describes a digital computer simulation which was prepared for the investigation of these interaction problems. The simulation was intended to be used for two purposes. The first was for comparisons of predicted with flight test results, while the second was for developing control systems which would reduce the interactions to suitably small levels.

The simulation was developed for overall representations of the aircraft motions and propulsion system dynamics for cruise conditions at high altitude (above 15.24 km) and supersonic Mach numbers (greater than about 2.4). Six degree-of-freedom aircraft motions together with the three-axis stability augmentation system were represented. Each inlet, operating in the started mode, was represented in sufficient detail so that effects of aircraft motions on controlled inlet performance and effects of moving inlet geometry on aircraft motions were included. Each engine was represented in the afterburning mode in a linearized form together with interactions with inlet and aircraft flight condition changes.

The parameter variations for the aircraft motions and engine representations over the flight range of interest were sufficiently moderate so that they could have been stored in the computer over the entire flight range of interest. However, the generation of pertinent inlet flow parameters presented a special problem since the representation of multivariable nonlinear functions was needed.

The use of a tabular form for these functions over the complete range of interest would have required an excessive amount of storage and computation time. In order to facilitate more efficient computer utilization, the simulation was designed to operate only in restricted ranges near selected nominal conditions. Nonlinear functions, principally ones describing inlet parameters, were represented as multivariable power series expansions. These expansions, then depended upon the nominal condition selected. A separate procedure was used to generate the expansion coefficients for selected nominal conditions from available wind tunnel and/or flight data.

NOTATION

Aj	incremental engine primary exhaust nozzle area
a	speed of sound
b	wing span
c	reference wing mean aerodynamic chord
c_D	drag coefficient, $\frac{D}{q_V S}$
$c_{\mathbf{L}}$	lift coefficient, $\frac{L}{q_v S}$
c_1	rolling-moment coefficient, $\frac{\text{rolling moment}}{q_V Sb}$
C _m	pitching-moment coefficient, $\frac{\text{pitching moment}}{q_V S}$
c_n	yawing-moment coefficient, yawing moment q _V Sb

2

c _y	side-force coefficient, $\frac{\text{side force}}{q_v^S}$
D	aerodynamic drag
f _a ()	nonlinear function contributing to inlet pressure recovery calculation
f _b ()	nonlinear function contributing to bypass signal pressure calculation
f _c ()	nonlinear function contributing to airflow unstart boundary calculation
f _c ()	nonlinear function contributing to spike unstart boundary calculation
g	acceleration due to gravity
h	altitude
I _{xx} , I _{yy} , I _{zz}	rolling, pitching and yawing moments of inertia about body reference axes
ſ _{xz}	product of inertia about body reference axes
L	aerodynamic lift
М	Mach number
m	aircraft mass
N	incremental engine rotor speed
n _z	normal acceleration at the cg
p,q,r	rolling, pitching and yawing angular velocities about body reference axes
p _s /p _{t_m}	ratio of bypass static pressure signal to free-stream total pressure
p _{t2} /p _{to}	ratio of total pressure at inlet diffuser exit to free-stream total pressure
p _{t4} /p _{to}	ratio of incremental burner total pressure to free-stream total pressure
$q_{_{\mathbf{V}}}$	dynamic pressure
S	wing area

A-4840

s	Laplace transform variable
T	time constant
T _t	total temperature
V	nominal forward velocity
wec	incremental airflow demanded by the engine corrected to diffuser exit conditions
	$\frac{\mathbf{w}_{e}\sqrt{\mathbf{t}_{2}/\mathbf{T}_{std}}}{\mathbf{p}_{\mathbf{t}_{2}}/\mathbf{p}_{std}}$
tu.	incremental afterburner fuel flow
^w fab	
w fpb	incremental primary burner fuel flow
X,Y,Z	forces along the x,y,z body axes
x _s	incremental shock wave position from unstart location
a	incremental angle of attack from $\alpha_{\mbox{\scriptsize W}_{\mbox{\scriptsize O}}}$
α w	angle of attack relative to wing reference plane
β	sideslip angle
δ _a	total antisymmetrical elevon deflection
$^{\Delta w}$ i $_{ m c}$	inlet airflow connected to diffuser exit conditions, $W_{*} = \sqrt{T_{*} / T_{*+}}$
	witt ₂ /T _{std} p _{t2} /p _{std}
	•
Δχ	denotes incremental value from the nominal condition, x-xo, for the arbitrary quantity x unless otherwise indicated.
$^{\delta}$ bp	position of actuator controlling bypass exit flow
δ _e	symmetrical elevon deflection
$^{\delta}\mathbf{r}$	vertical tail deflection
$^{\delta}$ sp	inlet spike position
δt	incremental engine thrust
0	pitch angle

ρ mass density of air

op roll angle

Subscripts

a total antisymmetrical values of left and right side propulsion system parameters

e external input

m measured value

o nominal value

s total incremental symmetrical value of left and right side propulsion system parameters

sas output from stability augmentation system

std standard value at sea level

value at compressor inlet

4 value at primary burner exit

Superscripts

left side

r right side

s stability axis system

Aerodynamic Derivatives

Generally, derivatives of coefficients are with respect to the indicated subscript; e.g. $C_{n_{\beta}} = \frac{dC_{n}}{d\beta}$. An exception to this notation is used for the aerodynamic damping derivatives, $C_{1_{\mathbf{r}}}$, $C_{n_{\mathbf{r}}}$, $C_{1_{\mathbf{r}}}$, $C_{n_{\mathbf{r}}}$. These terms are derivatives with respect to the subscripts times $\frac{b}{2V}$, e.g. $C_{1_{\mathbf{r}}} = \frac{dC_{1}}{d(\mathbf{r}b/2V)}$.

DESCRIPTION OF AIRCRAFT

The YF-12 is a delta-wing twin-engine aircraft which is capable of cruising at Mach numbers greater than 3 and at altitudes greater than 24.38 km. A three-view drawing of the airplane is shown in figure 1. The aerodynamic controls are as follows. Two elevons on each wing, one inboard and one outboard of each nacelle, operate together symmetrically and antisymmetrically with the pair on the opposite wing to provide longitudinal and lateral control. Two nacelle mounted all-movable vertical tails provide directional control.

The aircraft has two axisymmetric variable geometry, mixed compression inlets. Each inlet has a translating centerbody (spike), which varies the inlet contours with flight condition and a forward bypass door which diverts flow from the engine and dumps it overboard. The forward bypass door is continuously modulated through use of a closed loop control system to maintain the inlet airflow at a desired condition and to prevent inlet unstarts. Mach number as well as angle of attack and sideslip angle signals are supplied to the spike and bypass systems. Other flow is diverted from the inlet by a fixed bleed system on the centerbody which exhausts the flow overboard, a fixed bleed on the cowl, and an aft bypass door. The latter two flows supply secondary air for engine cooling. The aft bypass doors are manually scheduled by preselected increments with flight condition. In the event of an inlet unstart, control signals are scheduled to adjust the inlet spike and forward bypass doors to restart the inlet flow and then return the inlet to its previous position.

The engine is a Pratt and Whitney YJ58 single-spool axial flow turbojet with afterburner. Provision is made to bypass a portion of the air from the compressor. The bypassed air remixes with the primary flow at the entrance to the afterburner. Engine rotor speed is controlled by closed loop adjustment of the exhaust nozzle which varies back pressure on the turbine. The flow exits through a converging-diverging ejector nozzle with adjustable trailing edge flaps. Afterburner fuel flow is an open loop function of power lever angle, burner pressure, and compressor inlet temperature. Primary burner fuel flow depends upon the same quantities plus rotor speed.

DESCRIPTION OF SIMULATION

The purpose of the simulation was to represent both airframe motion and propulsion system dynamics in sufficient detail so that effects of parameter variations and interactions between the systems could be investigated. The simulation was intended for use both for identification with flight test results and for control system studies. Since a simulation which would operate at least as fast as real time was desired, a careful balance was necessary between depth of representation of the various components and computational speed. The simulation was intended to operate in the aircraft motion frequency range, which included the phugoid mode, from about 0.005 to

to 5 hertz. Hence higher frequency effects associated with both aircraft motions and the propulsion system were neglected. Simplifications in the representation of several inlet nonlinear functions, obtained from wind tunnel data, were also necessary. Rather than attempt to represent these functions of several variables in a tabulated form for the complete range of interest, power series expansions, valid for a restricted range, were made relative to selected nominal flight conditions. A procedure for obtaining these functions is discussed in a subsequent section and Appendix A. It was intended that the expansion coefficients be obtained through use of a separate computer program which would curve fit the original data and obtain the coefficients in a form for direct use in the simulation.

The equations used for the simulation are described in detail in the following sections of this report. Descriptions are given of the aircraft, inlet, and engine representations, as well as their respective control systems. Then the numerical integration procedures used are presented. Finally, a listing of the computer program is provided in Appendix B. A sketch of the subsystems represented together with the interconnecting variables for these systems are shown in figure 2. The numerical data used for the simulation are not included in this report.

Airframe Representation

The equations used to obtain six degree-of-freedom rigid-body aircraft motions are given in this section. Effects of inlet and engine forces and moments are included. The representation for the aircraft three-axis stability augmentation system and the control surface dynamics are also described. An outline of the computations performed is shown in figure 3.

Aircraft equations of motion— The following assumptions were made in determining the airframe equations of motion.

- 1. The airframe is assumed to be a rigid body.
- 2. The mass of the airplane is assumed to be constant for the portion the flight to be analyzed.
- 3. The earth is assumed to be flat, nonrotating, and fixed in inertial space.
 - 4. The aircraft has a vertical plane of symmetry.
 - 5. Small angle approximations apply.

Two moving-axis systems were used with origins at the center of gravity of the aircraft. The first is a stability axis system. In the definition used here, the x^S and z^S axes (positive forward and downward respectively) are located in the aircraft plane of symmetry and are aligned parallel and perpendicular to the instantaneous relative wind projected into the plane of

A-4840 7

symmetry. The y^S axis is perpendicular to the plane of symmetry (positive to the right). The second axis system is a body axis system which is fixed to the aircraft. The x and y axes are fixed in a wing reference plane (denoted w) which is aligned with the principal wing surface, whereas the z axis is perpendicular to it. The transformation from one axis system to the other is made by a rotation of the angle, α_W , about the common y axis. Aerodynamic stability derivatives and force and moment coefficients were available in the stability axis system. These quantities were transformed to the body axis system and then integrated with the result that motions as measured in flight would be directly represented. Moreover, body motions to be used as SAS signals would also be directly obtained. Since effects of changes in M on stability derivatives are small for the range of interest, they have been neglected.

As part of the initialization procedure, lateral-directional stability derivatives were converted from the stability axis direction to the body axis direction (a rotation of α_{W_0}). The effect of any subsequent changes in α on the lateral-directional stability derivatives was neglected. For these static derivatives, the conversion from stability to body axes was as follows:

$$C_{n_{i}} = C_{n_{i}}^{S} \cos \alpha_{w_{0}} + C_{\ell_{i}}^{S} \sin \alpha_{w_{0}}$$
(1)

$$C_{\ell_{i}} = C_{\ell_{i}}^{S} \cos \alpha_{w_{0}} - C_{n_{i}}^{S} \sin \alpha_{w_{0}}$$
 (2)

where the subscript, i, denotes a static derivative such as β , δ_a , etc. For the damping derivatives, the equations for resolving both the moment coefficients and the angular rates from stability to body axes are:

$$C_{n_{\mathbf{r}}} = C_{\ell_{\mathbf{p}}}^{s} \sin^{2} \alpha_{\mathbf{w}_{0}} + C_{n_{\mathbf{r}}}^{s} \cos^{2} \alpha_{\mathbf{w}_{0}}$$

$$+ \left(C_{n_{\mathbf{p}}}^{s} + C_{\ell_{\mathbf{r}}}^{s}\right) \sin \alpha_{\mathbf{w}_{0}} \cos \alpha_{\mathbf{w}_{0}}$$
(3)

$$C_{\ell_{\mathbf{r}}} = C_{n_{\mathbf{p}}}^{s} \sin^{2} \alpha_{w_{0}} + C_{\ell_{\mathbf{r}}}^{s} \cos^{2} \alpha_{w_{0}}$$

$$+ \left(C_{\ell_{\mathbf{p}}}^{s} - C_{n_{\mathbf{r}}}^{s}\right) \sin \alpha_{w_{0}} \cos \alpha_{w_{0}}$$

$$(4)$$

$$C_{n_{p}} = -C_{\ell_{r}}^{s} \sin^{2} \alpha_{w_{o}} + C_{n_{p}}^{s} \cos^{2} \alpha_{w_{o}}$$

$$+ \left(C_{\ell_{p}}^{s} - C_{n_{r}}^{s}\right) \sin \alpha_{w_{o}} \cos \alpha_{w_{o}}$$
(5)

$$C_{\ell_{p}} = C_{n_{r}}^{s} \sin^{2} \alpha_{w_{0}} + C_{\ell_{p}}^{s} \cos^{2} \alpha_{w_{0}}$$

$$- \left(C_{n_{p}}^{s} + C_{\ell_{r}}^{s}\right) \sin \alpha_{w_{0}} \cos \alpha_{w_{0}}$$
(6)

where the subscript, s, denotes stability axes and no superscript denotes body axes. The body axis derivatives were used in all subsequent calculations.

Drag and lift forces were initially calculated in the stability axis system.

$$\frac{D^{S}}{m} = \frac{q_{v}^{S}}{m} \left[C_{D}^{S}(\alpha) + C_{D_{\delta_{e}}}^{S} \Delta \delta_{e} + C_{D_{\delta_{bp}}}^{S} \delta_{bp_{s}} + C_{D_{\delta_{bp}}}^{S} \delta_{sp_{s}} \right]$$
(7)

$$\frac{L^{s}}{m} = \frac{q_{V}^{s}}{m} \left[C_{L}^{s}(\alpha) + C_{L_{\delta}}^{s} \Delta \delta_{e} + C_{L_{\delta}bp}^{s} \delta_{bp} + C_{L_{\delta}sp}^{s} \delta_{sp} + \frac{c}{2V} C_{L_{q}}^{s} q \right]$$
(8)

These forces were subsequently converted to body axis directions in the equations of motion.

The following equations describe the aircraft linear and angular accelerations relative to the body axes.

$$\dot{\mathbf{u}} + \alpha_{\mathbf{w}} \mathbf{V} \mathbf{q} = -\mathbf{g} \Delta \Theta + \mathbf{X}_{\delta} \mathbf{t}_{\mathbf{s}} - \frac{\mathbf{D}^{\mathbf{S}}}{\mathbf{m}} + \frac{\mathbf{L}^{\mathbf{S}}}{\mathbf{m}} \alpha_{\mathbf{w}} + \mathbf{X}_{\mathbf{o}}$$
 (9)

$$\dot{\mathbf{v}} + \mathbf{V}\mathbf{r} - \mathbf{g} \sin \phi - \alpha_{\mathbf{w}_{o}} \mathbf{V}\mathbf{p} = \frac{\mathbf{q}_{\mathbf{v}_{o}}}{\mathbf{m}} \left(\mathbf{C}_{\mathbf{y}_{\beta}} \mathbf{\beta} + \mathbf{C}_{\mathbf{y}_{\delta_{\mathbf{r}}}} \mathbf{\delta}_{\mathbf{r}} \right) + \frac{\mathbf{q}_{\mathbf{v}_{o}} \mathbf{S}\mathbf{b}}{2\mathbf{V}\mathbf{m}} \mathbf{C}_{\mathbf{y}_{\mathbf{r}}} \mathbf{r}$$
(10)

$$\dot{w} - Vq = Z_{\delta_{t}} \delta_{t_{s}} - \frac{D^{s}}{m} \alpha_{w} - \frac{L^{s}}{m} + Z_{o}$$
 (11)

$$\dot{p} - \frac{I_{xz}}{I_{xx}} \dot{r} = \frac{q_v^{Sb}}{I_{xx}} \left(C_{\ell_{\beta}} \beta + C_{\ell_{\alpha\beta}} \alpha \beta + C_{\ell_{\delta_a}} \delta_a + C_{\ell_{\delta_r}} \delta_r + C_{\ell_{\delta_b}} \delta_{bp} + C_{\ell_{\delta_sp}} \delta_{sp} \right) + \frac{q_v^{Sb^2}}{2VI_{xx}} \left(C_{\ell_r} + C_{\ell_p} p \right) + L_{\delta_t} \delta_t$$
(12)

$$\dot{q} = \frac{q_{V_{0}}^{Sc}}{2VI_{yy}} \left(C_{m_{\dot{\alpha}}} \dot{\alpha} + C_{m_{q}} q \right) - \frac{q_{V_{0}}^{Sc}}{I_{yy}} C_{m}(0)$$

$$+ \frac{q_{V_{0}}^{Sc}}{I_{yy}} \left(C_{m}(\alpha) + C_{m_{\delta_{e}}}^{\Delta \delta_{e}} + C_{m_{\delta_{bp}}}^{\delta_{bp}} b_{p_{s}} \right) + M_{\delta_{t}}^{\delta_{t}} t_{s}$$

$$\dot{r} - \frac{I_{xz}}{I_{zz}} \dot{p} = \frac{q_{V_{0}}^{Sb}}{I_{zz}} \left(C_{n_{\beta}}^{\beta} + C_{n_{\delta_{a}}}^{\delta_{a}} + C_{n_{\delta_{r}}}^{\delta_{r}} + C_{n_{\delta_{bp}}}^{\delta_{bp}} b_{p_{a}} + C_{n_{\delta_{sp}}}^{\delta_{sp}} a_{p_{a}} \right)$$

$$+ \frac{q_{V_{0}}^{Sb^{2}}}{2VI_{zz}} \left(C_{n_{r}} + C_{n_{p}}^{p} \right) + N_{\delta_{t}}^{\delta_{t}} t_{a}$$

$$(14)$$

Total variables were defined from incremental and reference condition variables as follows:

Propulsion System Variables:

$$\delta_{sp_{s}} = \delta_{sp}^{\ell} + \delta_{sp}^{r} - 2\delta_{sp_{o}}$$

$$\delta_{bp_{s}} = \delta_{bp}^{\ell} + \delta_{bp}^{r} - 2\delta_{bp_{o}}$$

$$\delta_{t_{s}} = \delta_{t}^{\ell} + \delta_{t}^{r}$$

$$\delta_{t_{s}} = \delta_{t}^{\ell} - \delta_{t}^{r}$$

$$\delta_{i_{a}} = \delta_{i}^{\ell} - \delta_{i}^{r}$$

$$(15)$$

where i denotes a spike, bypass, or thrust variable.

Longitudinal Variables:

$$\begin{cases}
\theta = \theta_{0} + \Delta\theta \\
\delta_{e} = \delta_{e_{0}} + \Delta\delta_{e}
\end{cases}$$
(16)

The horizontal and vertical forces for the reference conditions in equations (9) and (11) were calculated from the drag and lift terms by the following equations.

$$X_{o} = \frac{q_{V_{o}} S}{m} \left(C_{D}(0) - C_{L}(0) \alpha_{W_{o}} \right)$$

$$Z_{o} = \frac{q_{V_{o}} S}{m} \left(C_{L}(0) + C_{D}(0) \alpha_{W_{o}} \right)$$
(17)

Note that the transformation from stability to body axes for the lift and drag longitudinal equations was approximated differently than for the yawing and rolling moment lateral-directional equations. Since the effect of angle of attack changes were generally greater for the longitudinal equations, the lift and drag equations were continuously transformed from stability axes to body axes (eq. (9) and (11)) using the instantaneous values of angle of attack rather than only the nominal value. However, small angle approximations were used.

As indicated in previous equations, only aerodynamic nonlinearities due to angle of attack were included. These quantities were expressed in power series form as follows:

$$C_{D_{\alpha}}^{s} = C_{D_{f}}^{s} + C_{D_{\alpha}}^{s} \alpha_{w} + C_{D_{\alpha}^{2}}^{s} \alpha_{w}^{2}$$
 (18)

$$C_{L}^{S}(\alpha) = C_{L_{f}}^{S} + C_{L_{\alpha}}^{S} \alpha_{w}$$
 (19)

$$C_{\mathbf{m}}(\alpha) = C_{\mathbf{m}_{\mathbf{f}}} + C_{\mathbf{m}_{\alpha}} \alpha_{\mathbf{w}} + C_{\mathbf{m}_{\alpha}^2} \alpha_{\mathbf{w}}^2$$
 (20)

where the subscript f refers to the value of the quantity at $\alpha_{\rm W}$ = 0. Note that from the definitions used

$$\alpha_{\mathbf{W}} = \alpha_{\mathbf{W}} + \alpha$$

Dynamic pressure was calculated from the following approximate equation

$$q_V = \frac{1}{2} \rho(h) (V + u)^2$$
 (21)

For the nominal flight condition, the equation becomes

$$q_{v_o} = \frac{1}{2} \rho (h_o) V^2$$

The mass density, $\rho(h)$, was obtained from a tabulation of the 1962 atmosphere (ref. 1). The variable dynamic pressure, q_V , was replaced by the nominal value, q_V , for the smaller quantities such as damping terms in equations (9) to (14).

Incremental Mach number was calculated from the following approximate equation.

$$\Delta M = u/a_0 \tag{22}$$

Small angle assumptions were used for the Euler angle transformations, flow angles, and vertical velocity equations.

$$\dot{\phi} = p \tag{23}$$

$$\dot{\theta} = q \tag{24}$$

$$\alpha = \frac{w}{V} \tag{25}$$

$$\beta = \frac{V}{V} \tag{26}$$

$$\dot{h} = V \left(\theta - \alpha_{W} \right) - V \phi \tag{27}$$

Definition of propulsion system coefficients- Since the simulation was concerned with interactions between the propulsion system and aircraft motions, effects of both inlet and engine exit flows on the airframe forces and moments were included. In equations (9)-(14), these effects appear as the bypass, δ_{bp} , and spike position, δ_{SP} , terms from the inlet, and the thrust, δ_{t} , from the engine. The following interpretation of these propulsion system terms was used. The external forces and moments on the airframe due to an element of the propulsion system can be developed from external flow changes associated with that element. The resultant forces correspond to changes in momentum and energy of the discharged flow from that present in the undisturbed flow upstream of the aircraft. Changes in the internal flow are represented in the propulsion portion of the simulation. For example, a change in bypass position has two effects. The first is a change in external forces which result from energy losses and direction changes in the flow discharged from the bypass exit. This effect appears as the bypass terms in equations (9)-(14). The second is a change in the internal inlet flow, which is calculated in the propulsion part of the simulation. This change is transmitted to the engine, and results in a second external force change due to engine thrust. Similarly, a change in spike position produces a change in the flow at the entrance to the inlet and a resulting change in external forces, as well as a change in the internal inlet flow to the engine which results in a thrust change. The external effects of the spike are relatively small in comparison with the bypass effects. While the external forces due to the bypass and spike position vary somewhat with angle of attack and Mach number, a linearized representation suitable for a restricted range of these variables was used with the simulation.

Note that when effects of inlet geometry changes on overall forces are obtained from wind tunnel results, care is needed to insure that the measurements are consistent with the definitions used for the simulation. That is, internal inlet forces need to be measured and subtracted from the overall wind tunnel values so that only external forces remain. Two additional factors must be considered in the application of wind tunnel results to the representation of flight results. The first is that the internal pressure recovery, and hence the energy of the discharged inlet flow will generally be less for the model than for the aircraft. The second is that the angle of the discharged inlet flow for the wind tunnel model may be different from that on the aircraft. Hence approximate corrections may be needed for the wind tunnel results to account for these differences in the aircraft representation.

SAS and control surface dynamics—The pitch, roll, and yaw SAS dynamics for the aircraft were represented for the high-altitude supersonic cruise conditions of interest. The system provides basic damping of the aircraft motions and utilizes primarily angular rate sensing. In addition the yaw SAS is designed to provide not only airframe damping, but also stabilization about the vertical axis during an inlet unstart. The yaw SAS uses a lateral acceleration sensor at the nose as well as a yaw rate sensor at the c.g. Effects of sensor dynamics and system gain changing with flight condition were neglected in the simulation. The equations used are as follows:

$$p_{sas} = -\frac{K_{pp}p}{1 + T_{p1}s}$$
 (28)

$$r_{sas} = \frac{T_{r1}K_{rr}s}{1 + T_{r1}s} + \frac{K_{rn}n_{r}}{1 + T_{r2}s}$$
(29)

where $\boldsymbol{n}_{\boldsymbol{y}_n}$ is the lateral acceleration at the mose

$$q_{sas} = q \left[\frac{K_{qq}(1 + T_{q2}s)}{(1 + T_{q1}s)} + \frac{K_{q2}(1 + T_{q5}s)}{(1 + T_{q3}s)(1 + T_{q4}s)} \right]$$
(30)

Limits were included on the total $p_{\hbox{\scriptsize SaS}},~q_{\hbox{\scriptsize SaS}},$ and $r_{\hbox{\scriptsize SaS}}$ terms, and separately on the second order term in the $q_{\hbox{\scriptsize SaS}}$ equation.

The servo actuator dynamics for the aerodynamic control surfaces were approximated by second order equations. Provision was made in the simulation for SAS inputs, initial conditions, and external inputs. Effects of aerodynamic forces on the surfaces were neglected. The equations were expressed in the following form.

Aileron:
$$\frac{\ddot{\delta}_a}{m_a} + \frac{2\zeta_a}{\omega_n} \dot{\delta}_a + \delta_a = p_{sas} + p_e$$
 (31)

Rudder:
$$\frac{\ddot{\delta}_{\mathbf{r}}}{\omega_{\mathbf{r}}^{2}} + \frac{2\zeta_{\mathbf{r}}}{\omega_{\mathbf{r}}} \dot{\delta}_{\mathbf{r}} + \delta_{\mathbf{r}} = r_{sas} + r_{e}$$
 (32)

Elevon:
$$\frac{\ddot{\delta}_{e}}{\omega_{n_{e}}^{2}} + \frac{2\zeta_{e}}{\omega_{n_{e}}} \dot{\delta}_{e} + \Delta\delta_{e} = q_{sas} + q_{e}$$
 (33)

Inlet Representation

This section describes the simulation of the inlet together with the interconnections with other portions of the system. The first part provides an overall description of the inlet and the variables used to represent it. The succeeding parts describe several portions of the simulation in more detail.

Description of inlet system— The inlet for the YF-12 aircraft is of the mixed compression type with a translating centerbody used for geometry changes. Although the inlet is basically axisymmetric, body interference effects, together with some geometry changes to adjust for these effects, result in characteristics which are somewhat unsymmetric in the presence of sideslip and angle of attack variations. Forward and aft bypass doors are provided for control of the inlet airflow. The forward door continuously modulates the flow whereas the aft door is adjusted manually to one of three positions as a function of Mach number and serves only as a coarse flow adjustment. Effects of only the forward door were included in the simulation. The inlet also has a system of bleeds on both the cowl and centerbody. Airflow from these bleeds is either dumped overboard or is ducted to the engine to provide cooling. Provision for variations in these secondary flows was not included in the simulation. Effects of inlet flow distortion and turbulence, which are of importance for inlet-engine interactions, were also neglected.

A block diagram of the inlet simulation is shown in figure 4. The representation for each inlet is the same except that the asymmetrical β functions for one side are the mirror images of the β functions for the other side. The simulation is intended to represent conditions for the started inlet up to the unstart boundary. Inlet flow dynamics for the diffuser were simplified to a first order lag term since only motions in the aircraft frequency range were of interest. Hence the principal dynamics represented were those due to control system components. The basic parameter used to represent the state of the inlet diffuser was inlet corrected airflow, $w_{\hat{\mathbf{i}}_{\mathbb{C}}}$; i.e. diffuser airflow

corrected to diffuser exit conditions. This parameter is a direct function of inlet exit geometry for the frequency range of interest. The exit changes result from variations in the forward bypass opening and from changes in the airflow demanded by the engine.

Three other inlet parameters were determined - (1) pressure recovery, (2) bypass signal pressure ratio, and (3) terminal shockwave position. Inlet pressure recovery is a parameter affecting engine performance and is a primary input to the engine. The bypass signal pressure ratio is needed for the representation of the bypass control system and terminal shock-wave position represents the margin of the inlet from the unstart condition. A major problem in the simulation was the incorporation of wind tunnel results to provide an adequate representation of these three quantities. Wind tunnel data included in a Lockheed Aircraft Corp. report of a detailed digital computer simulation of the inlet indicated that the quantities are nonlinear functions of five variables. The two variables which have primary effects are the inlet variables: corrected inlet airflow and spike position. Three more variables, which have a secondary effect, are those describing entrance conditions to the inlet: angle of attack, sideslip angle, and Mach number. tabular representation of functions of this many variables, even over restricted ranges, would result in a rather cumbersome and slow computational procedure. A simpler approach for the purpose of generating time histories was to first curve-fit the multi-dimensional wind tunnel data by a power series expansion in several variables. Each function was then determined from the series as needed during the computation of the time history.

Inlet pressure representation— The coefficients of the series representing the pressure recovery and bypass signal pressure functions were obtained through use of a least square criterion. Care was necessary in selecting the range to be curve fitted and the resulting number of coefficients to be used in order to keep the representations as simple as possible. As previously mentioned, these pressures were represented as functions of two primary variables, the inlet variables, w_{ic} , and δ_{sp} , and three secondary variables, α , β , and M. The functional representation was expressed as follows. For a nominal condition of the three secondary variables, an expansion was made of the two primary inlet variables, w_{i_c} , and δ_{sp} . Expansions of the primary variables were also made with each of the secondary variables. Note that this procedure neglects terms containing crossproducts between the secondary variables. In these expressions, the expansions for the inlet variables, w_{i_c} and δ_{sp} , were made relative to convenient average inlet conditions, while the expansions for the secondary variables were made relative to the particular nominal flight condition. The former choice was made in order to facilitate adjustment of the inlet operating condition. Hence, for a set of nominal values of α and M (β = 0), the pressure recovery and bypass signal pressures were determined by the following expressions (fig. 4):

$$\frac{p_{t_2}}{p_{t_0}} = f_a \left(w_{i_c}, \delta_{sp} \right) + f_a \left(w_{i_c}, \delta_{sp}, \alpha \right)$$

$$+ f_a \left(w_{i_c}, \delta_{sp}, \beta \right) + f_a \left(w_{i_c}, M \right)$$
(34)

$$\frac{\mathbf{p}_{s}}{\mathbf{p}_{t_{m}}} = \mathbf{f}_{b}\left(\mathbf{w}_{i_{c}}, \delta_{sp}\right) + \mathbf{f}_{b}\left(\mathbf{w}_{i_{c}}, \delta_{sp}, \alpha\right) + \mathbf{f}_{b}\left(\mathbf{w}_{i_{c}}, \delta_{sp}, \beta\right) + \mathbf{f}_{b}\left(\mathbf{w}_{i_{c}}, M\right)$$
(35)

The series expansions for each of the f functions were expressed as

$$f(w_{i_c}, \delta_{sp}, X) = \sum_{i=0}^{i_{max}} \sum_{j=0}^{j_{max}} \sum_{k=1}^{k_{max}} C_{ijk}^{w_{i_c}} \delta_{sp}^{j} X^k$$
 (36)

where the quantity, X, represents α , β , or M. The upper limits used, which determine the number of coefficients required for each pressure function, are listed in Table 1. In the selection of the coefficients, C_{ijk} , an attempt was made to provide a balance between accuracy required and the need to maintain computational time as short as possible. Interpolation of the functions was also necessary in order to obtain expansions about the desired nominal flight conditions. The procedures used for determining these coefficients are described in Appendix A.

As previously stated the input variables were expanded relative to convenient average inlet conditions. Hence, for a particular reference condition, steady state corrections were necessary to set the nonlinear functions at the correct values and to interface with linear portions of the simulation. The corrections provided a means for adjusting the inlet to different reference conditions. The quantities, δ_{SP_0} and wic_0 (fig. 4), were used to define the inlet nominal operating conditions and, hence, to calculate nominal values of the nonlinear pressure and unstart functions. The quantity, $(p_{\text{S}}/p_{t_{\text{m}}})_{\text{o}}$, was calculated to null the signal error for the inlet nominal conditions so that a proper interface with the incremental bypass position, $\Delta \delta_{\text{bp}}$, would be obtained. The quantity, $(p_{t_2}/p_{t_0})_{\text{o}}$ was calculated to null the pressure recovery signal to the linearized engine for nominal conditions. Note that these corrections are distinct from initial condition selections.

Shockwave position and unstart boundaries—An additional calculation was made to obtain the inlet unstart boundaries and shockwave position as a function of distance from the unstart condition. The calculation was based on a power series expansion of wind tunnel results (contained in a Lockheed Aircraft Corp. report) with respect to a nominal flight condition. The form for the inlet unstart boundary to be represented as a function of inlet parameters (with fixed α , β and M) is shown in sketch a. The lower boundary in the sketch represents the effect of restricting the inlet exit flow so that unstart occurs and will be called the airflow boundary. The left hand boundary represents the effect of overcontracting the area ratio at the inlet entrance with the spike so that unstart occurs, and will be called the spike boundary. These

16

Sketch (a)

boundaries are affected primarily by changes in M and also by variations in α and β . The data for the unstart boundaries were obtained from steady-state wind tunnel tests. Because of the relatively low frequency of the disturbing quantities relative to the basic inlet dynamics, dynamic effects on unstart were not considered significant.

An examination of available wind tunnel data resulted in the following functional forms for the unstart boundaries. The relation of each function to the rest of the inlet simulation is indicated in figure 4. In curve fitting the data, effects of α , β , and M were represented separately since effects of simultaneous variations in these quantities were felt to be of higher order. The basic airflow and spike boundaries, with M corrections added, were expressed as follows:

Airflow Boundary,
$$f_{c_a}(\delta_{sp_d})$$
, $f_{c_a}(\delta_{sp}, M)$:

For
$$\delta_{sp_1} \leq \delta_{sp_d} \leq \delta_{sp_2}$$

$$f_{c_a}(\delta_{sp_d}) = w_{i_2}$$
For $\delta_{sp_d} \geq \delta_{sp_2}$

$$f_{c_a}(\delta_{sp_d}) = w_{i_2} + K_{c_1}(\delta_{sp_d} - \delta_{sp_2})$$

$$(37)$$

where $\delta_{sp_d} = \delta_{sp} + K_{i_{12}}^{\Delta M}$

$$f_{c_a}(\delta_{sp}, M) = -K_{i_{15}}\Delta M + K_{i_{16}}\delta_{sp}\Delta M$$
 (38)

Spike boundary, $f_{c_s}(\delta_{sp_d})$:

$$f_{c_s}(\delta_{sp_d}) = \delta_{sp_d} - \delta_{sp_3}$$
 (39)

A-4840

All of the quantities in equations (37) and (39) with numbered subscripts denote constants. The M corrections provide both slope and displacement changes to the airflow unstart boundary.

Separate α and β functions were applied to obtain displacement corrections for the airflow and spike unstart boundaries. These functions were of the following form:

Angle of attack correction:

$$\begin{cases}
c_a^{(\alpha)} = K_{i26}^{\alpha} + K_{i27}^{\alpha^2} \\
c_s^{(\alpha)} = K_{i28}^{\alpha} + K_{i29}^{\alpha^2}
\end{cases}$$
(40)

Sideslip angle corrections:

For
$$\beta \leq 0$$
,
$$f_{c_{a}}(\beta) = K_{121}\beta^{2}; \quad f_{c_{s}}(\beta) = K_{124}\beta^{2}$$
 For $\beta \geq 0$,
$$f_{c_{a}}(\beta) = K_{122}\beta^{2}; \quad f_{c_{s}}(\beta) = K_{125}\beta^{2}$$
 (41)

As indicated in figure 4, the unstart airflow boundary, $w_{i_{c_u}}$, is the sum of the airflow boundary nonlinear functions.

$$w_{i_{c_{u}}} = f_{c_{a}}(\delta_{sp_{d}}) + f_{c_{a}}(\delta_{sp}, M) + f_{c_{a}}(\alpha) + f_{c_{a}}(\beta)$$
(42)

Similarly, the unstart spike boundary is the sum of the spike boundary functions.

$$\delta_{sp_u} = f_{c_s} \left(\delta_{sp_d} \right) + f_{c_s} (\alpha) + f_{c_s} (\beta)$$
 (43)

The shockwave position was curve-fitted from wind tunnel data as a non-linear function, $f_d(w_{ic})$, of incremental airflow from the unstart boundary.

$$x_s = K_{i32}^{\Delta w} + K_{i33}^{\Delta w} \sin \left(K_{i34}^{\Delta w} \right)$$
 (44)

where

$$\Delta w_c = w_i_c - w_i_{c_u}$$

The function was assumed to be independent of inlet and flight conditions for the operating range of interest. An inlet unstart, which could result from either the airflow or spike boundaries being exceeded, was indicated by either of the following equations:

$$x_s \le 0$$
, or $\delta_{sp} \le \delta_{sp_{11}}$ (45)

The simulation was terminated when an unstart occurred since unstart conditions were not represented.

Inlet control system— The inlet control system positions the spike as a function of flight condition, and bypass flow as a function of flight condition and engine airflow demand. The objective is to maintain the inlet airflow at as high a performance condition, i.e. high pressure recovery and minimum flow distortion, as possible while still preventing an inlet unstart. The spike position is determined by an open loop command function which is computed from flight condition measurements. Bypass flow is adjusted by closed loop control with the forward bypass doors. The bypass signal is a pressure signal indicative of the position of the terminal shockwave in the inlet. It is formed from a combination of several static pressure sources which are summed and divided by a signal which is an approximate measurement of free stream total pressure. The use of this latter measurement reduces effects of dynamic pressure changes on the control signal. The signal is represented by a single variable, $p_{\rm S}/p_{\rm t_m}$, in the simulation. The desired pressure signal is a function of flight condition measurements.

The inlet control command signals and bypass loop are included in figure 4. The flight condition measurements, α , β , M, and n_z were used as open loop commands to both the spike and bypass controls. Dynamics associated with these measurements were represented by the time constants, T_{α} , T_{β} , and T_{M} . The effect of α , β , M, and n_z command signals to the spike were represented by the functions $f_{sp}(\alpha_m)$, K_{i12} , $f(\beta)$, K_{i19} , and $f_{sp}(n_z)$ respectively. Similarly command signal corrections used for the bypass pressure ratio setpoint were $f_{bp}(\alpha M)$, K_{i10} , $f(\beta)$, and $f_{bp}(n_z)$. The command functions were expressed as power series expansions as follows:

Spike commands:

$$\Delta f_{sp} \left(\alpha_{w_m} \right) = f_{sp} \left(\alpha_{w_m} \right) - f_{sp} \left(\alpha_{w_o} \right)$$
 (46)

where

$$f_{sp}(\alpha_{w_m}) = \sum_{i=2}^{3} a_{s\alpha i} |\alpha_{w_m} - 5.0|^{i}$$

$$\alpha_{\mathbf{w}} = \alpha_{\mathbf{w}} + \alpha_{\mathbf{m}}$$

$$f_{sp}(M_m) = K_{i19} \Delta M_m \tag{47}$$

$$f_{sp}(n_{z_{m}}):$$
For $|n_{z_{m}}| > \ell_{1}$,
$$f_{sp}(n_{z_{m}}) = a_{sn_{z}}(|n_{z_{m}}| - \ell_{1})$$
For $|n_{z_{m}}| \leq \ell_{1}$,
$$f_{sp}(n_{z_{m}}) = 0$$

$$(48)$$

where ℓ_1 is a constant.

Bypass commands:

$$\Delta f_{bp} \left(\alpha_{w_m}, M_m \right) = f_{bp} \left(\alpha_{w_m}, M_m \right) - f_{bp} \left(\alpha_{w_o}, 0 \right)$$
 (49)

where

$$f_{bp}(\alpha_{w_m}, M_m) = \sum_{i=0}^3 \sum_{j=1}^2 a_{ij} \alpha_{w_m}^i \Delta M_m^j$$

$$f_{bp}(n_{z_m})$$
:

For $|n_{Z_m}| \ge \ell_1$,

$$f_{bp}(n_{z_m}) = a_{bn_z}(|n_{z_m}| - \ell_1)$$
For $|n_{z_m}| \le \ell_1$,
$$f_{bp}(n_{z_m}) = 0$$
(50)

Spike and bypass command:

$$f(\beta_m)$$
:

For
$$\beta_{m} \leq 0$$
,

$$f(\beta_{m}) = \sum_{i=2}^{3} a_{\beta i} \beta_{m}^{i}$$
For $\beta_{m} \ge 0$,
$$f(\beta_{m}) = \sum_{i=2}^{3} b_{\beta i} \beta_{m}^{i}$$

$$(51)$$

Note that the command functions are expressed as incremental values from nominal conditions.

The bypass control loop consisted of the bypass control dynamics and the previously described diffuser dynamics and signal pressure function (fig. 4). The bypass actuator dynamics and filtering were simplified to the second order form shown. Effects of M changes on the bypass control gain were neglected.

Engine Representation

The simulation represented the dynamic response of the engine operating in the afterburning mode and a block diagram is shown in figure 5. The simulation for each engine was identical. The response was linearized relative to a selected nominal condition. Hence, all engine states shown in figure 5 are incremental values from the nominal condition and the Δ symbol denoting increments has been omitted. The primary purpose of the engine representation was to provide input-output relationships for those variables which directly interacted with other portions of the aircraft systems. However, sufficient depth of the representation was considered necessary to also provide a basis for comparisons with subsequent flight-test results. The principal relationships represented consisted of the dynamic response of engine thrust, compressor airflow, and fuel flows to throttle position and inlet pressure recovery. Response to the latter input was included since it represented the principal interconnecting parameter from the inlet to the engine. The compressor corrected airflow, we, response was needed since this quantity was the the principal interconnecting parameter from the engine to the inlet.

Effects of variations in flight condition, i.e. Mach number, M, and dynamic pressure, q_V , on the engine response were also represented. These quantities were input to the engine simulation at the pressure disturbance location with the gain functions, K_{i23} and $f_1(M)$ based on calculated thrust changes. The gains were determined from steady-state variations in calculated thrust due to each input parameter with the other parameter held constant. The quantity, q_V , produces an engine dynamic response which is similar to a

 ${\rm Pt}_2/{\rm Pt}_0$ input since a compressor inlet pressure change occurs in both cases. Hence, these two inputs were added at the same point for the simulation. However, the M disturbance produces engine dynamic responses somewhat different from ${\rm pt}_2/{\rm pt}_0$ since it introduces compressor inlet temperature changes. Since the frequency content of the M disturbance is relatively low in comparison with the engine dynamics, the representation of the difference in the dynamic response due to this disturbance from a ${\rm pt}_2/{\rm pt}_0$ disturbance was not considered necessary. Hence, the M disturbance was introduced in the same manner as the pressure disturbances. As previously mentioned, the gains from the ${\rm q}_V$ and M inputs were determined from the variations in steady-state thrust only. Hence, although qualitatively the same, the resulting changes in fuel-flow and burner pressure due to M inputs were somewhat in error. Note, however, that these engine variables are of less importance than others since they are not fed back to other portions of the simulation.

Corrections due to M inputs were also applied to the engine compressor airflow variable by means of the gain K_{i20} . The gain was estimated through use of a linearization of steady-state compressor operating curves and the corrected airflow relationship. An additional consideration was that a change in compressor inlet temperature due to M would result in a slight change in trimmed rotor speed. This effect was neglected in the rotor speed calculation but was included in the selection of the gain for the engine airflow calculation.

Once the form of the engine simulation was established, numerical values of the dynamic coefficients were obtained by matching time histories computed from this simulation with results computed from a more extensive simulation of the engine which included nonlinear representations of all major engine components. The engine simulation is described in a report by the Pratt & Whitney Div. of United Aircraft Corp. For a desired nominal operating condition, responses of installed thrust, fuel flow, burner pressure, and rotor speed to throttle and pressure recovery inputs were used for the comparison.

Numerical Integration Techniques

The methods used for numerical integration of the dynamic equations previously described are given in this section. In selecting the integration method to be used for achieving a certain accuracy level, careful attention must be given to tradeoffs in computational time, levels of complexity in the method itself, and the maximum allowable size of the integration step. This tradeoff will also depend on the degree of complexity of the system representation including the nonlinear relationships present.

Two basic integration methods, which were intended for use with fixed step size integration, were applied to different portions of the simulation. The first was an equation of motion method for integration of a set of first order differential equations. This method was used to integrate the aircraft equations of motion. The second method involved the determination of the

response of linear portions of the system to a step input during each integration interval and is called the z-transform method. This method was used for the remaining portions of the system - SAS, inlet, engine, and their controls.

For the equation of motion method, the following second order Adams-Bashford predictor equation (e.g. ref. 2) was used to obtain the value of the vector state Y at time \mathbf{t}_{k+1} from known values at times \mathbf{t}_k and \mathbf{t}_{k-1} .

$$Y(t_{k+1}) = Y(t_k) + \left[3Y'(t_k) - Y'(t_{k-1})\right] (T/2)$$
(52)

where the continuous 1st order differential equation is given by the vector form

$$Y' = f(t,Y)$$

The method involved prediction by means of a polynomial curve fit of present and past values of each state variable to be integrated. While a higher order integration algorithm involving more past terms in Y' could have been used, some computational experimentation indicated that an overall improvement would not be obtained. In order to maintain a certain accuracy level, the computation interval could not be increased sufficiently to compensate for the additional time required to compute the higher order form. A basic problem in using this integration method occurs when a large dynamic range of equations is present. If the step size selected is too large for the higher frequency dynamics, the calculation can go unstable since the derivative for the high frequency equation is assumed constant for too large an increment of time.

One method for improving computational accuracy for the higher frequency portions of the system is to integrate those equations in closed form with the assumption of a known input over the integration interval. The z-transform method can be used to find the output of a linear dynamic element to a selected input over a sampling interval, T. This approach is particularly useful for a system represented in block diagram form. An example of the application of the z-transform method to numerical integration is included in reference 3. Note that the method can still be used for a nonlinear system as long as the system can be separated into zero memory nonlinearities and linear dynamics. The simplest form of input to use is a step that is assumed constant over the integration interval. However, the input actually changes during the interval. If the value of the input at the beginning of the interval is used for the entire interval, a time delay is introduced which can result in an unstable calculation for a system with feedback loops. One way to include the effect of the changing input, with values known at the beginning and end of the interval, would be to determine the response of the linear element to a ramp input. A simpler approach, which was actually used, is to employ the equations for the step response but to average the input over the sampling interval.

This averaging was done as follows. For locations where the input was known at both the beginning and end of the sampling interval, the average value of the input was directly calculated by the following equation.

A-4840 23

$$\mathbf{r}_{av} = \frac{1}{2} \left[\mathbf{r} \left(\mathbf{t}_{k} \right) + \mathbf{r} \left(\mathbf{t}_{k+1} \right) \right] \tag{53}$$

This computation was possible for instance when integrating a state with an input which was previously integrated through use of the equations of motion method. However, the value of the input at the end of the sampling interval may not always be available. For instance at feedback junctions, the updated value of the returned quantity generally is not known. A typical situation is shown in sketch (b).

Sketch (b)

The input, r, was assumed known up to and including the time, t_{k+1} . States in the feedback loop dynamics including the output, c, were known only up to the time t_k . In order to average both inputs to $f_1(s)$, an estimate of c_1 for the interval t_k to t_{k+1} was needed. The following predicted average equation was used for this situation.

$$c_{1}_{av_{p}} = \frac{1}{2} \left[3c_{1}(t_{k}) - c_{1}(t_{k-1}) \right]$$
 (54)

Again it was felt that the use of a higher order prediction equation would not allow a sufficient increase in sampling time to compensate for the resulting increased computational time. The predicted coefficient, c_1 was then compared av_D

bined with a time averaged r coefficient to form an averaged error input to $f_1(s)$. The integration algorithm was then applied to obtain $c(t_{k+1})$. Next the outputs of the remaining quantities in the loop, f(c) and $f_2(s)$ were computed for the time t_{k+1} . While the procedure could have been iterated further through use of the quantity, $c_1(t_{k+1})$, it was not considered necessary. Similar procedures using input averaging and prediction, where necessary, can be applied to more general feedback structures, and also to systems of first order equations.

For the YF12 simulation, the airframe motion dynamics were expressed in first order form and integrated by means of the equations of motion method (eq. 52). All other components, the SAS, inlet, and engine, and their controls, were integrated by the z-transform method with the components in block diagram form. A subprogram was used to compute z-transform coefficients which represented responses of first or second order transfer functions to a step input. Input averaging (eq. (53) and (54)) was included for cases in which the frequency content of the input was sufficiently high to result in some variation during the integration interval. The simulation operated in real time with a step size of 0.02 seconds.

CONCLUDING REMARKS

The simulation was intended for use both for the identification of parameters by comparison with flight test results, and for control system studies. Only preliminary flight measurements of SAS-off Dutch-roll oscillations have been available and these measurements allow a comparison with only a portion of the simulation. The flight measurements indicated a reduction in Dutch-roll damping due to activity of the inlet control system and results from the simulation indicated similar changes. Hence, on the basis of available flight data, the simulation is felt to exhibit adequate sensitivity to parameter variations.

APPENDIX A

REGRESSION ANALYSIS FOR NONLINEAR PRESSURE FUNCTIONS

The requirements for determining the coefficients for the polynomial expansion for the inlet nonlinear pressure functions are outlined in this section. The effort involves selecting the form of the expansion and obtaining a least squares fit of the data for the range of interest. To date these computations were performed separately although a general program could be prepared to compute all necessary coefficients in sequence and output them in a punched card form suitable for use in the 8400 digital computer program. The necessary mathematical steps are outlined in the following paragraphs.

The polynomial expansions of the pressure variables were obtained from wind tunnel data which are functions of five independent variables. Two variables were considered to be primary ones, $w_{i_{\rm C}}$, $\delta_{\rm Sp}$, to be fitted with greater accuracy, and the remaining variables, $\alpha_{\rm W}$, β , M, were considered secondary and were fitted less accurately. Polynomials of prescribed form were fitted to the data using a least square criterion. A factor to be accounted for in the curve-fitting process was that the range for which the inlet variables $\left(w_{i_{\rm C}}, \delta_{\rm Sp}\right)$ were needed varied with flight condition. A double interpolation of a portion of the polynomial coefficients was also required since, in general, the expansions were made relative to nominal conditions which were different from the original data conditions.

The complete polynomial expansion for either the pressure recovery or signal pressure function, P, was expressed in the following form by the substitution of equation (36) into equation (34) or (35)

$$P\left(\alpha_{w_{0}}, 0, M_{o}\right) = \sum_{i=0}^{i_{max}} \sum_{j=0}^{j_{max}} C_{ij}w_{i_{c}}^{i}\delta_{sp}^{j}$$

$$+ \sum_{i=0}^{i_{max}} \sum_{j=0}^{j_{max}} \sum_{k=1}^{k_{max}} C_{ijk}w_{i_{c}}^{i}\delta_{sp}^{j}\alpha^{k}$$

$$+ \sum_{i=0}^{i_{max}} \sum_{j=0}^{j_{max}} \sum_{k=1}^{k_{max}} C_{ijk}w_{i_{c}}^{i}\delta_{sp}^{j}\beta^{k}$$

$$+ \sum_{i=0}^{1} C_{im}w_{i_{c}}^{i}\Delta M$$
(A1)

Note that the expansion is made relative to nominal flight condition of $\alpha_W = \alpha_{W_O}$, $\beta = 0$, and $M = M_O$. Also, the incremental angle of attack is defined as $\alpha = \alpha_W - \alpha_{W_O}$. As previously discussed, provision was made to expand the inlet variables, w_{i_C} and δ_{sp} , about any convenient average inlet condition. The upper summation limits for each pressure function are given in Table 1. The procedure for obtaining the coefficients was separated into the following steps.

The first step was to perform a linear regression for the two primary variables, w_{i_c} and δ_{sp} , for values of α_w , β , M for which wind tunnel data were available. Hence, the form of the first summation in equation (A1), denoted by P_1 , was used to determine the regression equation for the unknown coefficients $C_{ij}(\alpha_w, \beta, M)$.

$$P_1(\alpha_w, \beta, M, J) = \sum_{i=0} \sum_{j=0}^{\infty} C_{ij}(\alpha_w, \beta, M) w_{ic}^i(J) \delta_{sp}^j(J)$$
 (A2)

where

$$J = 1 \cdot \cdot \cdot N(\alpha_{W}, \beta, M)$$

The value, $N(\alpha_w, \beta, M)$, is the number of data points used to determine $P_1(\alpha_w, \beta, M)$ as a function of w_{i_c} and δ_{sp} for each constant (α_w, β, M) condition.

The second step was to interpolate the C_{ij} coefficients in the α and M directions to selected nominal values of α_{W_O} and M_O . Both linear (using two values per direction) and quadratic (using three values per direction) interpolations were used. The choice depended upon the variations in the coefficients between data points in the α_W and M directions. An available single direction interpolation program was successively applied as follows.

$$C_{ij}\left(\alpha_{w}, \beta, M\right) \stackrel{M}{\rightarrow} C_{ij}\left(\alpha_{w}, \beta, M_{o}\right)$$

$$C_{ij}\left(\alpha_{w}, \beta, M\right) \stackrel{\alpha}{\rightarrow} C_{ij}\left(\alpha_{w_{o}}, \beta, M\right)$$

$$C_{ij}\left(\alpha_{w_{o}}, \beta, M\right) \stackrel{M}{\rightarrow} C_{ij}\left(\alpha_{w_{o}}, \beta, M_{o}\right)$$

where the subscript o refers to the selected nominal value of the M or α_{W} variable.

The third step was to perform a linear regression for the primary variables with each of the secondary variables, α , β , M, as indicated by the second, third, and fourth summations in equation (A1). The resulting expansions were made relative to the nominal conditions selected in the previous interpolation. For instance, for the α variable, the regression equations for the unknown C_{ijk} coefficients were as follows:

$$P_{2}(\alpha, 0, M_{o}, J) = \sum_{i=0}^{i_{max}} \sum_{j=0}^{j_{max}} \sum_{k=1}^{2} C_{ijk}(\alpha_{w_{o}}, 0, M_{o}) w_{i_{c}}^{i}(J) \delta_{sp}^{j}(J) \alpha^{k}(J)$$
 (A3)

where

$$J = 1 \cdot \cdot \cdot N(0, M_0)$$

The quantity, $N(0, M_0)$, is the number of data points used to determine $P_2(\alpha, 0, M_0)$ as a function of w_{ic} , δ_{sp} , and α .

The function, $P_2(\alpha, 0, M_0, J)$ was computed from the following equation.

$$P_2(\alpha, 0, M_0, J) = P_1(\alpha_w, 0, M_0, J) - P_1(\alpha_{W_0}, 0, M_0, J)$$
 (A4)

The functions, $P_1(\alpha_w, 0, M_O, J)$ and $P_1(\alpha_{w_O}, 0, M_O, J)$, were determined through use of the first summation given in equation (A1) and the appropriate C_{ij} coefficients. For instance, the equation for $P_1(\alpha_{w_O}, 0, M_O, J)$ is

$$P_{1}\left(\alpha_{w_{o}}, 0, M_{o}, J\right) = \sum_{i=0}^{i_{max}} \sum_{j=0}^{j_{max}} C_{ij}\left(\alpha_{w_{o}}, 0, M_{o}\right) w_{i_{c}}^{i}(J) \delta_{sp}^{j}(J)$$
(A5)

A similar procedure was used to obtain the expansions for the β and M variables in equation (A1).

APPENDIX B

SIMULATION PROGRAM LISTING

A listing of the computer program for the representation of the YF12 aircraft motions and propulsion system dynamics is provided in this section. A list of the principal fortran variables is given in Table 2. Listings of other subroutines used in the execution of the simulation such as an executive monitoring program, which provides overall control, and numerical integration programs are not included.

The subprograms shown in the listing are used in the following sequence. In subroutine SETUP, the necessary initial quantities are calculated for use in subsequent portions of the simulation. Each integration step is controlled by subroutine LOOP1. This subroutine calls, in turn, the subroutines for the various parts of the simulation - INLET, ENGINE, CONTRL (SAS), and AIRFRM. In each of these subroutines, the necessary constants for the dynamic equations are calculated and calls are made to the appropriate integration subroutines when needed. Brief descriptions of several additional subroutines which are called in the listing are as follows.

ZXFORM - This subroutine calculates the coefficients to be used in the z-transform integration as a function of transfer function coefficients and integration interval.

XFERDA - This subroutine is used in scaling, biasing, and time multiplexing signals to be output to analog recorders.

MGRATE - This subroutine is the initialization portion of the equation of motion integration method. The number of variables to be integrated, order of integration, and step size are established.

GRATON - This subroutine computes and stores results for an integration interval for the equations-of-motion integration method.

ARDC62 - This subroutine is a tabulation of density and speed of sound versus altitude for the 1962 ARDC atmosphere.

VALLMT - This function supplies limits for an indicated variable.

The computer listing for the aircraft equations is as follows.

```
C
               TITLE
                                                            SETUP
              SUBROUTINE SETUP
       C
              COMMON /BLK1 / IMODE
                                         , i DT
                                                    . ITIMES
                                                               • DT
                                                                           NOT
                   TIME
                             ₽D2R
                                         . 1 D
       C
              COMMON /BLK2 / UB
                                                                           • 08
                                         ,VB
                                                    . WB
                                                               ø PB
 8
                   64
                             PHIR
                                         .THETP
                                                    PSIR
                                                               .PH1
                                                                           . THET
             1.
                   PSI
                             , DM
                                         BETA
                                                    ALFA
                                                                           ALFAR
                                                               .BETAR
             2.
                                                                           .CLDR
10
                             ANY
                                        ANZ
                                                               CLTA
             3.
                   ALT
                                                    °CL8
                             ,CLDSP
                                         CLRS
                                                    .CLPB
                   CLABB
                                                               CNR
                                                                           .CNDA
11
             4,
                             CNUBB
                                                                           PELTAA
                                         .CNRSP
                                                               CHPR
            5.
                   CHDR
                                                    . 77
                             DELTAP
                                        .027
.PT25(2)
                                                                           .PT27
                                                               .P57
13
            5 a
                   DELTAE
                   TSP(2)
                                                    .FLA(2)
14
                                                               .AJC(2)
                                                                           .RPM4(2)
15
                                         POBAF
            3.
                   7(2)
                             .WEC1(2)
16
       Ċ.
įź
                                                    .CDA2
                                         ,CDA1
             COMMON /BLK3 / CDZ
                                                               ∍CL7
∍CDDBA
                                                                           .CLAI
                                                    ∍DDTE
18
                   0.42
                                                                           JODDSP
            1.
                             .CMA1
                                         JCM42
                                        JOUF TSP
                                                    , CÉFGB
                   นี้นักิจย
                             JCLFD9P
                                                               .09497
19
            5.
                                                                           , VZ
2¢
                   AREA
                                         , снеел
            3,
                             .XMASS
                                                    SPAN
                                                               • G
                                                                           , XXT
                                        TEX
                   XZT
                                                               XXXX
                                                                           *XIXX
21
            4.
                             XLT
                                                    .XIIT
            5.
                             *X1XZ
22
                   XIZZ
                                         oCY9.
                                                    CYDR
                                                               OCYF?
                                                                           JOLAS
                                                               CLTSPS
                                                                           CLPBS
            6.
7.
                                                    , CHIBP
53
                   CMAR
                             "CMO≘
                                         CHBE
24
                   CLP35
                             ₽CLDAS
                                         *CLDR3
                                                    .CLDSPS
                                                                           .CN8S
25
            8.
                   CNPRS
                             CNPDS
                                         CNDAS
                                                    CNDRS
                                                                           . CNDSPS
26
27
       c
                                                                           "XKRN
              COMMON /BLK5 / XKPP
                                         , XKoΩ
                                                    ,XKQ2
                                                               * KKB6
28
                   TCI
                             .TC2
                                        .TCNI
                                                    .TC∏1
                                                               aTCR?
                                                                           ■TCD21
             1 .
                                        WNA
29
            2.
                   TCD22
                             .TCN3
                                                               . WNF
                                                    . ZA
                                                                           . 7E
30
            з,
                   ыч₽
                             ,ZR
                                         Tii
                                                    .T12
                                                                           . HNSP
                                                               4 1 T a
                                        TE
                                                    .TE4
31
            4.
                   ZSP
                             PTE1
                                                               A7751
                                                                           . TEN2
32
            5.
                   TED2
                                         רם נד.
                             PTIDA
                                                    STIDM
33
       Ç
34
              COMMON / SLK7 / GIA
                                        .G1₽
                                                    •C10
                                                               .G10
                                                                           *G2A
35
                   G 28
                             .G20
                                                    . C>E
                                                               , G > C
            .
                                         .G25
                                                                           .G2H
36
                   651
                                         * GPK
                                                    Jack L
                                                               GTA
            2.
                             ,02J
                                                                           .G3B
                             , G 4 B
37
             3.
                   GAA
                                         -G40
                                                    "⊊4°
                                                               - G45
                                                                           . G 4F
                                                                           , c78
38
             4 .
                   G5A
                                         , 65c
                                                    , 6 A
                                                               . G7A
                             ,GSR
39
            5.
                   GZC
                             .67₽
                                         ,G9A
                                                    . F-8₽
                                                               • GAC
                                                                           , 38D
40
                             .GSF
                                         #05¢
            6.
                   CBE
                                                    ۵۰,8₩
                                                               .Gai
                                                                           ₀ Ç8J
            7.
41
                   GáK
                              ∡G6L
42
       Ĉ
              COMMON /BLK8 / G9A
43
                                         , G 9 B
                                                    •69C
                                                               , G90
                                                                           •99E
44
                   GOF
            1.
                             ,G10A
                                         ,311A
                                                    •G113
                                                               .G110
                                                                           .G11D
45
                   GIIE
             2.
                             .G11F
                                         ,G115
                                                    .G12A
                                                               •G129
                                                                           ⊿G14A
46
            3.
                   6148
                             .G14C
                                        •G147
                                                    .G14E
                                                               , GlaF
                                                                           .G15A
47
            4.
                   G 15B
                             ∍G150
                                         .G15
                                                    .G16A
                                                               .G163
                                                                           ,616C
48
                                        J6165
            5.
                   G:6p
                             .616€
                                                    .G16G
                                                               #GI6H
                                                                           .G17A
49
            6.
                   G17P
                             ∍G17€
                                        •G13A
                                                    .618P
                                                               #G130
50
            7.
                   GIGA
                             •G19∂
                                         .G204
                                                    .G208
51
       C
52
             COHMON /BLK10/ GN1(17)
                                       aFR1(17)
                                                   ∠Z01(17)
                                                              .Z11(17) .GN2(4)
53
            1.
                   A2ND(4) .82ND(4)
                                        -2021(4)
                                                   .7022(41
                                                               . Z121(4)
                                                                          .7122(4)
54
       C
55
             COMMON /BLK11/ ALFAZ
                                        . ALFATR
                                                    . DSPZ
                                                                           . DBPZ
                                                               AMICZ
                   THETZ
                           .DEZ
56
                                        .PBIC
                                                    # 69 I C
                                                               RBIC
                                                                           PHIIC
57
                                        DHIC
            2.
                   THEIC
                                                               ALFAIC
                             PSIIC
                                                    *BETAIC
                                                                           ALTIC
58
            3.
                   ICDSP(2) .DSPIC(2) .DSPDIC(2).ICDBP(2)
                                                               -DAPIC(2) -PRPDIC(2)
                   ICPPM(2) .RPMIC(2) .ICAJ(2)
50
            4.
                                                   .AJIC(2)
                                                               AJDIC(2) AJCDIC(2)
60
            5.
                   ICHFAB(2).WFAB10(2).ICWFFB(2).WFFB(C(2).ICPSAS
                                                                           .PSASIC
                                        -05ASIC
                             .IC0543
                                                   .ICRSAS
                                                                           RSADIC
61
                                                               PSASTC
                   PSADIC
62
                                                               BADIC
                   RSALIC
                             . RSAZIC
                                                    PAIC
                                                                           . ICPE
                                         ichr
63
            5.
                             .DEDIC
                   DEIC
                                                    ∍DRTC.
                                                               DICEG
                                                                           , X 3
64

A XM∂
                                        ALT.
65
66
       C
67
             DIMENSION 10RD(4)
68
       ¢
69
             DATA NUM1/17/, NUM2/4/, 10RD/4+0/
70
       С
71
             10=1
72
      C
73
             DT=.001+1DT
74
75
          INITIALIZE
      C
76
77
      ¢
             TIME=0.0
```

```
78
        ¢
 79
              P8=P81C+D2R
 80
              DE=OBIC+D2R
 81
              RB=RBIC+D2R
 82
        C
              PHI =PHIIC
PHIR =PHI=D2R
 83
 84
              THET "THEIC
 85
 85
              THETR=THET+D2R
              PSI *PSIIC
PSIR *PSI*D2R
 87
 88
 89
        £
              BH =DMIC
BETA =BETAIC
 96
 91
 92
              BETAR =BETA+D2R
              ALFA MALFAIC
ALFAR MALFA+D2R
 93
 94
 95
              ALFAZR#ALFAZ+D2R
 96
        C
 97
              UP=DH+968.
 98
              VB=BETAP+VZ
 99
              WE=ALFAP+VZ
100
        C
101
              ALTHALTER
102
       €
           QUANTITIES RELATED TO REFERENCE CONDITIONS
103
104
        C
105
              PSZ ==(G9A+G98+DSPZ+(G9C+G9D+DSPZ+(G9E+G9F+DSPZ)+MICZ:+W1CZ)
106
        ¢
107
              PT2Z==(G15A+G159*DSPZ+(G150+G150*D5P7)*WIC7)
108
        C
109
              DSJ1=ALFAZ+ALFAZ
              DSU2=ALFAZ+DSU1
110
111
              GZZ #G2A+DSU2+G2B+DSU1+G2C+ALFAZ
112
        C
113
              DSUB-ABSIALFAZ-G74)
114
              Պ$U4#D$U₹#D$U3
115
              D$85=0883+9884
116
              G7Z =G79+DSU5+G7C+DSU4+G7D+DSU3
117
        Ċ
           STABILITY DERIVATIVES CONVERTED FROM STABILITY AXES TO RADY AYES
118
       C
119
        C
120
              CALFAZ=COS(ALFAZR)
121
              SALFAZ=SIN(ALFAZR)
122
              CALFZ2=CALFAZ+CALFAZ
123
              SALFZ2=54LFAZ+SALFAZ
              DSU6 =(CNPBS+CLR9S)+SALFAZ+CALFAZ
DSU7 =(CLP9S=CNRBS)+SALFAZ+CALFAZ
124
125
126
        C
127
              CNB
                     =CNBS+CALFAZ+CLBS+SALFAZ
128
              CLS
                     #CLUS+CALFAZ-CNBS+SALFAZ
              CNRP =CLPBS+SALFZ2+CNRBS+CALFZ2+DSU6
129
                     =-CNPBS+SALFZ2+CLR95+CALFZ2+PSU7
=-CLR85+SALFZ2+CNP95+CALFZ2+PSU7
130
              CLPB
131
              CNPB
132
              CLPB
                    =CNRBS+SALFZ2+CLPHS+CALFZ2=DSU6
                    #CNDRS+CALFAZ+CLDRS+SALFAZ
133
              CNDR
134
              CLDR
                     =CLDRS+CALFAZ=CNDRS+SALFAZ
135
              CNDA
                     #CNDAS+CALFAZ+CLBAS+SALFAZ
136
              CLDA =CLDAS+CALFAZ=CNDAS+SALFAZ
137
              CNDBP = CNDBPS+CALFAZ+CLDBPS+SALFAZ
              CLDBP =CLDBPS+CALFAZ-CNTRPS+SALFAZ
138
139
              CNDSP = CNDSPS + CALFAZ+CLDSPS + SALFAZ
140
              CLDSP #CLDSPS*CALFAZ-CNDSPS*SALFAZ
141
142
           Z-TPANSFORM SETUP
143
       C
144
              GN1(1) =T14/T12-1.
145
              FR1(1) =1./T12
146
        C
              GN1(2) =1./TI1
147
              FR1(2) =1./T11
148
149
        C
              GN1(3) =1,/TE3
FR1(3) =1,/TE3
150
151
152
153
        C
              GN1(4) =1./TE1
              FR1(4) =1./TE1
154
155
        C
```

```
GN8(5) 01./7E4
156
              FR115) =1./TEA
157
156
       ¢
              GN1(6) -1./7E81
158
160
              FRI(4) DIO/YEDI
161
       C
              GN1(7) -TEM2/TED2-1.
PR1(7) -1./TED2
162
163
164
       ¢
              CHILB: --XKPP/1C!
165
              FR1(8) 91./7C1
166
167
       C
168
              GN1(0) DXKGCoTCN1/7CD1
169
              FR1(9) =1./9001
170
        C
171
              GN1(16) = XKOO/TCD1
172
              FR1(10)=1./TCD1
873
174
              GN1(11) @XKQ20(1.oTCN2/TCD21)/(TCD210TCD22)
175
              PR1(11)01./TCD21
176
       C
177
              GN1(12) = YKQ20(YCN2/TCD22=1.)/(TCD21=TCD22)
178
              FR1(12)=1./7CD22
179
       C
180
              GN1(13)-XKRR
181
              PR1183101./9CN3
182
        C
183
              GN1114) PXKRW/TC2
              FR1(14)=1./702
184
185
        C
186
              GN1(15)=1./TIDA
167
              FR1(15)=1./TIDA
185
        С
189
              GN1116101./7108
              FR1(16)=1./110B
190
191
        C
192
             GN1(17) P1 . /TIDM
              FP1(17)01./TIDH
193
194
        Ĉ
195
               GN2(1) DWNSPOHNSP
               AZND(1) "Zo ZSPOHNSP
196
               82ND(1) CHNSPOHNSP
197
198
        C
              GNS(S) = MNY + MNY + WA
199
200
               G2ND(2) BWNAOWNA
201
202
        С
              GND(3) THNEOHNE
ASND(3) THNEOHNE
ASND(3) THNEOHNE
203
204
205
206
        Ĉ
207
               GN2(4) SUNROWNR
808
               A2ND(4)@2.02ReWNR
$09
               82ND141-WNROWNR
210
        ¢
211
212
              CALL ZXFORM(NUM1.GN).FR1.Z01.Z11.NUM2.IRR7.GN2.A2NT.A2ND.
513
                            Z021.2022.7121.7122.071
214
        Ĉ
215
               RETURN
216
        ¢
217
               END
```

```
C
                                                           LOCP 1
               TITLE
             SUBROUTINE LOOP!
       C
             COMMON /BLK1 / IMODE
                                        . IDT
                                                    .ITIMES
                                                               , DT
                                                                          TON
            1.
                  TIME
                             , D2R
                                         .10
 6
      C
 7
             COMMON /BLK2 / UB
                                        .VB
                                                    , WB
                                                               , 29
                                                                          .03
 ð
                                        .THETP
                                                    .PSIR
                   RB
                             PHIR
                                                               PHI
            1.
                                                                          . THET
                   PSI
            2.
                             . DM
                                                                          . ALFAR
                                         SETA
                                                               BETAR
                                                               . CL.DA
10
            3.
                   ALT
                                                    .CLS
                                                                          .CLDR
                             . ANY
                                        ANZ
11
            4.
                   CLDpp
                             .CL DSP
                                        ,CL9R
                                                    .CLPR
                                                               CNP
                                                                          CNDA
12
            5.
                             • CNDSP
                                        . ENDSP
                                                                          .DELTAA
                   CNDR
                                                    CNPE
                                                               Chpb
13
            5.
                   DELTAE
                             .DELTAP
                                        .02%
                                                    •F72
                                                               ,PSZ
                                                                          PTZZ
                   DSP(2)
                                                                          "RPMM(2)
14
            7.
                             .Dap(2)
                                        .PT25(21
                                                    .FL#(2)
                                                               SAJETES
15
            8.
                   T(2)
                             .WEC1121
                                        SAPOS
16
      C
17
             COMMON /BLK3 / CDZ
                                        CDA1
                                                    "CBA2
                                                               .CL7
                                                                          .CLA1
18
                   CM7.
                                        . CMAR
                                                               .comge
                                                                          CDDSP
                             .CMA1
                                                    .CDDE
19
                   CLFDF
                                                    .CLFCB
                                                               . OFIR?
                                                                          , V Z
                             .CLF DRP
                                        ,CLF ?SP
20
                   AREA
                                        .EH5□7
                                                                          XXT
                             .XMASS
                                                    SPAN
                                                               a G
21
            4.
                                                                          *XIAA
                   XZT
                             XLT
                                        , XHT
                                                    .XNT
                                                               XXXX
22
                                        .cya
                                                    .CYDP
            5.
                   XIZZ
                                                               .CYPS
                                                                          .CLAS
                             *XIXZ
                                        . ดหกร
23
                             CHOR
                                                    .CMDBP
                                                               .CLPS
                                                                          #CLP85
            6.
                   CHAP
                                        CLDES
                                                               .CLPSPS
            7.
                   CLRRS
                             .CL∃AS
                                                    .CLDEPS
                                                                          CMBS
                                                                          CHOSES
23
            3
                   CNPRS
                             .CNRBS
                                        CNDAS
                                                    . CNDES
                                                               CHERRS
26
      Ċ
27
             COMMON /BLKS / XKPP
                                        . XK90
                                                                          *XKBA
                                                    * KKUS
                                                               * X K G B
28
                   TOI
                                                               .TCY?
                                        . TCN1
                                                    .TCT1
                                                                          #TCD21
            1.
                             .TC2
                             TCN3
                                                    . Z i
                                                                          , 7
29
                                        , W IA
                                                               WAE
TIA
                   TCD22
            2.
            Ĵ,
30
                                                    .T12
                                                                          . INSP
                   WNR.
                             .IR
                                        ,TII
                   73P
                                        TIT
                                                    , T * 4
31
                             .TE1
            4.
                                                               .TF"1
                                                                          .TEN2
32
            5
                   TED2
                                                    *TIDE
                             ,TIDA
                                        FCITA
33
      C
34
             COMMON / BLK7 / GIA
                                        GIB
                                                    ∍61C
                                                               .G17
                                                                          . COA
35
                   €2€
                             •65C
                                        ,GZE
                                                    • C ≯F
                                                               .625
                                                                          , сон
36
            2.
                   C 2 I
                             .G2J
                                        .G2K
                                                    46.2L
                                                               . 671
                                                                          •G3B
37
                             •94B
                                        ,G40
                                                               ,G4F
            3.
                   GAA
                                                    .40
                                                                          ,G4F
38
            4.
                   G5A
                             ,659
                                        ,G50
                                                    365A
                                                               .G74
                                                                          ,57B
39
                   G7C
                             . G7₽
                                                                          ,G3D
            5.
                                        . GBA
                                                               .Gac
                                                   , G 3 A
40
                                                                          , cáj
            6.
                   GBE
                             .CSF
                                        . G 8 G
                                                    .Sg⊬
                                                               .G3!
41
                   G&K
                             GBL
42
      C
                                        .G99
43
             COMMON /BLK8 / S9A
                                                   ,G9C
                                                               ,G90
                                                                          , GOE
44
                  G OF
                                        .G11A
            1.
                             .GICA
                                                   .G11B
                                                               .G11C
                                                                          #6117
45
                   SILE
                                        .G115
                                                               .G123
                                                                          6.44
            ŝ,
                             GIIF
                                                   .G12A
46
            3.
                   G14n
                             .G14C
                                        .G147
                                                    .G14E
                                                               .GI4F
                                                                          , C15A
47
            4.
                   6150
                             .6150
                                        .6157
                                                    "GIGA
                                                               -6163
                                                                          .G16C
                                                               •G15H
48
            5.
                   0160
                             .GIEE
                                        .GISE
                                                    #G160
                                                                          #G174
                                        .G18A
13
                   6173
                                                   .GIAR
                                                               •619¢
                             .G170
            6.
                             .619R
50
                   G19A
            7.
                                                    •0209
                                        •G204
51
      C
52
                                        .FR1(17)
                                                               ≠711(17)
                                                                          .GN2(4)
             COMMON /BLK10/ GN1(17)
                                                   .Z01(17)
53
                  42ND(4) ,82ND(4)
            1.
                                        #Z321(4)
                                                   .7:22(4)
                                                               ,Z[21(4)
                                                                          .712714)
54
      C
55
             COMMON /BLK11/ ALFAZ
                                        JALFAZR
                                                   .DSP?
                                                               PHICE
                                                                          . NBPZ
56
                   THETZ
            1.
                                        *B310
                                                               PRATO
                            .DEZ
                                                   .CB1C
                                                                          *PH110
57
                                        DHIC
                                                                          ALTIC
            2.
                   THEIC
                             ,PSIIC
                                                    #SETAIC
                                                               JALFAIC
58
            3,
                   ICOSP(2) .DSPIC(2)
                                       .DSPDIC(2),1079P(2) .D3P10(2) .D8PDIC(2)
59
            4.
                   TORPH(2) _RPMIC(2) _!CAJ(2)
                                                   .AJ10125
                                                               .AJDIC(2) .AJCBIC(2)
60
            5.
                   CIDICARUST MEADICE
                                       1. ICHPPR(21.WEPBIC(2).ICTSAS
                                                                          .PSAS1C
                                                              RSASIC
61
                   PSADIC
                                        . QSASIC
                                                   . ICPSAS
                             . I-CQ-5.4-S
                                                                          PRIADIC
62
                                        AUDIL
                                                   PAIC
                                                               .DADIC
                   RSALIC
                             .RSA2IC
                                                                          . ICDE
63
            8,
                                        . ICDR
                                                   DRIC
                   PEIC
                             .DECIC
                                                               DRFIC
                                                                          . x3
64
                             ,XM3
                                        ALTI
65
66
67
             DIMENSION SAMPLA(2), SLOPLA(2), PLAUMT(2), IPLA(2), IWORDA(2)
68
      C
69
             DATA SLOPLA/O..O./.PLALFT/O..C./.IPLA/O.C/
7C
      C
71
          INPUT SIGNALS
72
73
74
             Sel=1 C1 60
             RAMPLA(1) -SLOPLA(1) -TIME
76
             IF (RAMPLA(1).GT.PLALMT(1)) PAMPLA(1)=PLAL"T(1)
                      =IPLA(I)+RAMPLA(I)
             PLACEL
```

```
AJC(I) =0.0
AJC(I) =0.0
7890123445688901234456
       C
              CALL INLEY
       C
              CALL ENGINE
       C
              CALL CONTRL
       C
              CALL ATREAM
       c
              CALL XFERDA(IMODE.[WORDO.O)
       Ç
              IF (IMODE.GT.O) TIME=TIME+DT
       C
              RETURN
       C
              ENT
```

```
1
      C
              TITLE
                                                            INLET
 3
             SUBROUTINE INLET
      ¢
             COMMON /PLK1 / IMODE
                                                    .ITIMES
                                                                          .NoT
                                                               • DT
 5
                  TIME
                             .D2R
                                        .ID
 6
      C
             COMMON /BLK2 / UB
                                        ,VB
                                                    , KB
                                                               .PB
                                                                          . 48
                             PHIR
                   ΡĐ
                                        THETP
                                                    PSIR
                                                               .PHI
                                                                          THET
            ١,
                                                                          , ALFAR
 9
                   951
                                                    ALFA
                                                               .BFTAR
            2.
                             " DM
                                        BETA
10
            3,
                   ALT
                             . ANY
                                        ANZ
                                                    CLB
                                                               CLDA
                                                                          CLDR
                             CLDSP
11
            4.
                   CLDgg
                                        CLRE
                                                    .CLP∂
                                                               . CѤ
                                                                          , CNDA
12
                   CHIDA
                             CNDBP
                                        CHESP
                                                    CNRB
                                                               CNPB
            5,
                                                                          *DELTAA
                                        .02Z
.PT2S(2)
            6,
                   DELTAE
                             .DELTAP
                                                    OTZ
                                                               .PS7
                                                                          , PT27
                                                   PLA(2)
                   DSP(2)
                             DBP(2)
14
            7.
                                                               ($13LA.
                                                                          ,PPM4(2)
Ī5
                             .WEC1(2)
                                        . DORAR
            8,
                   1(2)
Īō
      C
                                                                          , XKRN
17
             COMMON /BLKS / XKPP
                                                    , XKQ2
                                                               "XKR₹
                                        , xKaa
                                                    ,TCD1
18
                   101
                             .TC2
                                        .TCV1
                                                               .TON?
                                                                          .tcD21
            1,
                                        a w<sup>¥</sup>lA
                                                                          , Z.E.
19
                   T0922
                             .TCN3
                                                    . Z A
                                                               ∍ ANE
            2.
20
                                                                          " M.IZb
            3,
                   WHR
                                        .Tii
                                                    .T12
                             . ZR
                                                               . T [ 4
                                        ,TE3
21
                   ZSP
            4.
                             .TE1
                                                    TEA
                                                               ∍TEE1
                                                                          . TENS
22
            5.
                   TED2
                             ATIDA
                                        ,TID3
                                                    ING LT .
23
      Ċ
24
             COMMON /BLK6 / XKIS
                                        *XKI6
                                                    , XK 11D
                                                               •XKT12
                                                                          *XK115
25
                   XKI16
                             *XK119
                                        *XK150
                                                   *XK123
      C
26
27
                                        .G18
             COHMON / BLK7 / GIA
                                                    #G10
                                                               -G11
                                                                          *65¥
28
                   658
                                        •G2€
                                                   ,G2F
                                                               .G2C
                                                                          ,G2H
                             G?C
29
                   621
                             .G2J
                                        .62K
                                                    "G2L
                                                               .GJA
                                                                          ∍G3B
30
            3,
                   GAA
                             .G48
                                        .G4C
                                                   JE40
                                                               .G45
                                                                          . G4F
31
            4,
                   G3A
                             •G5€
                                        .G50
                                                   . GAA
                                                               •G7A
                                                                          .G78
32
            5.
                   67C
                             ,G77
                                        . G 3 A
                                                   . G 3 5
                                                               ∍G8€
                                                                          .G8D
33
                                                                          .GBJ
            5.
                   GBE
                             .S8F
                                        .085
                                                   , Gau
                                                               . G61
34
                   GBK
                             .G8L
35
      Ç
             COHMON /BLK8 / G9A
                                        ,99B
                                                   ,69¢
36
                                                               ,69₹
                                                                          .G9E
37
                   G9F
                                                    •G11B
                                                               •G11C
                             .G104
                                        #G11A
                                                                          ·9110
            1.
                                                    GIZA
38
            2.
                   GITE
                             .G11F
                                        .G11G
                                                               65 t a .
                                                                          .G14A
39
                                                               .G14F
            з.
                   G148
                             .G14C
                                        .G147
                                                    .G14E
                                                                          •G15A
40
                                                               E310.
H310.
                                                                          .C160
                                                    ∍G16A
            4.
                   G15B
                             .615C
                                        .615°
41
                                        .616F
            5.
                                                    •619¢
                                                                          • G 1:7 A
                   C16D
                             .G.OE
                             -G170
                                                               .G145
42
                   6178
                                                    GIAD
                                        •G184
            6.
                                                    ,G20B
43
            7.
                   6134
                             .G193
                                        .G204
44
      ¢
45
                                        FR1(17)
                                                   .Z01(17) .Z[1(17) .GN2(4)
             CAMMON /BLK10/ GN1(17)
                                        ,7021141
46
            1.
                   A2NP(4) .B2ND(4)
                                                   .Z022(4)
                                                               .2121(4)
                                                                          ·*122(4)
47
      C
                                                                          .DBP7
48
             COMMON /BLK11/ ALFAZ
                                        .ALFAZR
                                                    .ESPZ
                                                               - NICZ
                   THETZ
49
                            .DEZ
                                        PRIC
                                                   •391C
                                                               PRIC
                                                                          →PHI1C
                                                   .BETAIC
                                                                          ALTIC
50
                   THEIC
                                        * DWIC
                                                               .ALFAIC
51
            3,
                   ICTSP(2) JSPIC(2) JTSPDIG(2) JCTBP(2) JTSPIC(2)
                                                                          "78₽3TC(2)
                                                               #AJP10(2) #AJ0910(2)
52
            4.
                   IGRPH(2) .RPMIG(2) .ICAJ(2)
                                                   (SIDILA.
                                                                          .PSASIC
53
                   IGHFAB(2).WF+BIC(2).ICHFP9(2).WFPBIC(2).ICFSAS
                                                   ICRSAS
54
                   PSADIC
                                        .CSASIC
                                                              PSASIC
                                                                          . RSADIC
            6.
                             .ICOSAS
55
            7.
                             RSA210
                                                    DATE
                                                               DITAGE
                                                                          . I CDE
                   RSA110
                                        # ICDA
56
                   0136
                             .DEDIC
                                        .ICDR
                                                    .Pelc
                                                               .DPT10
                                                                         ∍X9
            8.
57
                             XM2
                                        ALTZ
58
59
60
             DIMENSION DSP1(2).DSP1P(2).DSP1PP(2).DSP1S(2).DSP1S(2)
            1. DOUT (2), DOUTP (2), DOUTPP (2), PSC(2), PS(2), TE(2)
61
62
            2,X5D(2),D8P1(2),D6P2(2),DPPR(2)
63
            3, DW1(2), DWIP(2), DWIC(2), DW(2)
64
            4.PT2(2).G1(2).G4(2).G5(2).G8(2).G9(2).G10(2).G11(2).G13(2).G14(2)
            5.615(8).616(2).617(2).614(2).EG10(2). NWTCU(2). NWC(2).WEC(2)
65
66
      C
67
      C
58
             ALFATHZ01(15) +ALFAT+Z11(15) +ALFA
69
      C
70
             BFTAT=Z61(16) *BETAT+ZI1(16) *GET#
71
      ¢
72
             DMT=201(17)+DMT+211(17)+DM
73
      C
74
75
             DG1=A9s(ANZ)-G38
                (DG1.LT.0.0) DG1=0.0
76
             G3=G3A+DG1
             G6=G6A+DG1
```

```
78
       ¢
 79
              G12@(G12A+G12B+ALFA)+ALFA
 80
       ¢
 81
              BG5=ALFAT+ALFAZ
 82
       C
 83
              DG2=ABS(DG5=G7A)
 84
              DG3=DG2+DG2
 85
              DG4=DG2+DG3
 86
              G7mG7B*DG4*G7C*DG3*G7D*LG2-G7Z
 87
       C
 88
              DG6ºDG5ºDG5
 89/
              DG7=DG5+NG6
 90
              G2=G2A+DG7+G2B+DG6+G2C+DG5-G27+(G2E+DG7+G2F+DG6+G2G+DG5+G2H
 91
                +(521+DG7+G2J+DG6+S2K+DG5+G2L)+DHT1+DMT
 92
       C
 93
              G194(G194+G198+DM)+DM
 94
 95
              DG8P(G1A+ABS(BETAT)+G18)+BETAT+PETAT
 96
              DC99(G1C0ABS(BETAT) &GID) +BETATORETAT
 97
              IF (9ETAT) 100,101,101
 98
          100 G1(1)=008
 99
              G1(2)@NG9
100
              Ge Te 102
101
         101 G1(1)=0G9
102
              G1(2)=DG8
103
         102 CONTINUE
104
105
              NG10(1)=BETA
106
              DG10(2) == BETA
              JG11=BETA*BETA
107
108
             · DG12=ALFA+ALFA
109
       C
110
              PT3mXK123aDQBAR
              WEC2=XKI20+DM
111
112
       C
113
              00 1000 Tala2
114
       C.
115
              D9PIS(I) #G6+G7+XK119*DMT+XK112*G1(I)
              Sel(1) =.5+(3.+0sels(1)=3selse(1))
116
117
              DSPISP(1)=DSPIS(1)
118
       C
         if (IMODE) 201.2.202
201 IF (ICDSP(I).E0.0) G0 T0 202
120
121
122
                       =DSPIC(1)
              COUTP(1) =DSP(1)-DSP7
123
124
              COUTPP(I)=DOUTP(I)=DSPD(C(I)+5T
125
126
       C
127
         202 DOUT(1)=Ze21(1)*DOUTP(1)*Ze22(1)*DOUTPP(1)*Z121(1)*DS=1(1)
128
                     *Z[22(1)*DSP[P(1)
129
       C
130
              DSP(|)=Deur(|)+DSPZ
131
       C
132
              DOUTPP(1) * DOUTP(1)
133
              DRUTP(1) =DOUT(1)
134
       C
135
         203 DSPIP(I)=DSPI(I)
136
       ¢
137
              WEC(1)=WEC1(1)+WEC2
138
              DW1(1) WXKI5+DBP(1)+WEC(1)
139
              DMIP(I) = .5 \times (.3.*DMI(I) = DMIP(I)I
140
       C
141
              DW(1)=Z01(2)+DW(1)+Z11(2)+DW1P(1)
142
              DMIP(I) mbW1(I)
143
       Ċ
144
              DWIC(1) = DW(I) + WICZ
145
       C
146
              PSC(1)=G2-XK110+G1(1)-G3
147
       C
148
              G4(%)*(G4A+G4B+D5P(!)+G4C+DWIC(!))*4LFA
140
                   +(G4D+G4E+DSP(1)+G4F+DWIC(1))+DG12
150
       C
151
              GS(1)=(G5A+G5B+DSP(1)+G5C+DW1C(1))+PM
152
       C
153
              G8(1)=(G8A+G8B+DSP(1))+BG10(1)+(G8C+G8T+DSP(1))+DG11
154
                    *((G8E+G8F+DSP(I))*BG10(I)+(G8G+G8H*DSP(I))*TG11+((G8I+
155
                   G8J*DSP(1))*DG(0(1)*(G8K+G8L*DSP(1))*DG(1)*DW(C(1))*DW(C(1)
```

```
156
       C
             G9(1)=G9A+G9R+DSP(1)+(G9C+G9D+DSP(1)+(G9E+G9F+DSP(1))+DWIC(1))
157
158
                    *Bwic(1)
159
       C
160
             PS(1)=G4(1)+G5(1)+G8(1)+G9(1)
161
       ¢
162
              DE(1)=PS(1)+PSZ-PSC(1)
163
       C
164
              X5D([)=XK[6*DE(])
165
       C
166
              IF (1MSDE) 211,2,212
167
         211 IF ((CDSP((),EQ.O) GF TO 212
168
       ¢
169
170
              DBP(|) = DBP(C(1)
              D8P2(1)=T14+X5D(1)=T12+C8P3(C(1)
171
              D8=1(1)=D8P(1)=D8P2(1)
172
173
              Ge To 213
       ¢
174
175
         212 DBP1([)=DBP1([)+X5D([)*DT
              DBP2(T)=Z01(1)+DBP2(T)+Z[1(1)+X5D(T)
176
177
       C
              DBP([)=DBP1([)+DBP2([)
178
179
       Ç,
         213 DRPR(T)=(DBP(T)+DBP7)+17.4
180
       c
              G14(1)=(G14A+G14B+DSP(I)+G14C+DHIC(I))+ALFA
181
                    +(G14D+G14E+DSP(1)+G14F+DW(C(1))+DG12
182
183
       ¢
              G15(1)=G15A+G15B+DSP(I)+(G15C+715D+DSP(I))+DW1C(I)
184
185
       C,
              G16(1)=(G16A+G16B+D$P(1))+DG1O(1)+(G16C+G15D+DSP(1))+FG(1+((G15E
186
                    +G16F*DSP(1))*DG1C(1)+(G1EG+G16H*DSP(1))*TC11)*TW1C(1)
167
188
       C
189
              G17(1)=(G17A+G17B+DSP(1)+G17C+DW1C(1))+DM
190
       ¢
191
              P72(1)=G14(1)+G15(1)+G15(1)+G17(1)
192
       C
193
              PT2S(I)=PT3+PT2(I)+PT2Z+G19
194
       C
195
              G10(I)=DSP(I)+G10A+DM
196
              G20=(G20A+G20B*ALFA)*ALFA
197
       C
198
              # (#610(1)) 110,112,112
199
          110 IF(G[1G*DG]1-G[0(])+G[1E+G20) 111.111.115
200
          111 G11(1)=G11A+G11F+DG11
201
              GO TO 114
202
          112 IF(G11D+DG11+G10(I)+G11E+G20) 113,113,115
203
          113 G11(1)=G11A
          114 DG13=G10(1)=G118
204
              IF (DG13.GE.O.O) G11(1)=G11(1)+G11C+DG13
205
206
       C
207
              GI3([)=XK116+DSP([)+DM
208
              DW(CU(1)=G11(1)+G12+G13(1)+XK115+DM
              DWC(1)=DWIC(1)-DWICU(1)
209
210
              IF (DWC(I)) 115,115,116
         ii5 GIB([]=0.0
Ge Te 1000
li6 GIB([]=GIBA+DWC([])+GIBB+S]N(GIBC+DNC([]))
211
212
213
214
       C
       1000 CONTINUE
215
216
217
            2 RETURN
218
       C
219
              END
```

```
PIPLE
            ¢
                                                                                                                 FNGINE
 1
 3
                         SUBROUTINE ENGINE
            ¢
                         COHMON /BLK! / IMODE
                                                                            FELS
                                                                                                  . ITIMES
                                                                                                                       DT
                                                                                                                                            ∍NDT
 5
                       l۵
                                   TIME
                                                       0 D2R
                                                                             a I D
 6
            ¢
                         CONMON /BLKS / UB
                                                                            ٥٧Β
                                                                                                                       , PO
                                                                                                  a NB
                                                                                                                                            • OB
                                                                            PHETE
                                                                                                                       PHI
                                                                                                  PSIP
                                                                                                                                            .THET
 8
                                    RP
                                                       ₽H}R
                       10
                                                                                                  .ALFA
  9
                                                                             ,9ETA
                                                                                                                                            PALFAR
                                    Ps1
                                                                                                                        PETAR
                       20
                                                        "DM
                                                                                                  °CĽ.
10
                       30
                                    ልቤ ፑ
                                                       ⊿ANY
                                                                            SITA
                                                                                                                       CLDA
                                                                                                                                            .CL DQ
11
                       40
                                    CLDap
                                                       &CL DSP
                                                                            a CLRB
                                                                                                  CLPB
                                                                                                                       .CNR
                                                                                                                                            ∍CNDA
                                                                                                                       CHED
                                                       CHTPP
                                                                            "CNDSP
                                                                                                                                            PELTAA
12
                       5,
                                    CVDR
                                                                                                  , CNRP
3 J
                       50
                                    DELTAE
                                                       . DELTAR
                                                                            ,G27
                                                                                                  .57Z
                                                                                                                       P57
                                                                                                                                            PT2Z
                                                                            "PT25(?)
14
                                    DSP(2)
                                                       .DEP(2)
                                                                                                  aPLA(2)
                                                                                                                       (F)CLA.
                                                                                                                                            *RPHM(2)
15
                       8,
                                    1(2)
                                                       WEC1(3)
                                                                            PUDDIO
            ¢
17
                         COMMON /BLK5 / XKPP
                                                                            ,χKQC
                                                                                                  .xKQ2
                                                                                                                       <sub>α</sub> XX PP
                                                                                                                                            .XKRN
19
                                    PCI
                                                       ₽TC2
                                                                            .TCN1
                                                                                                  ∍TC71
                                                                                                                       »TCN2
                                                                                                                                            ∍TCD21
                        10
19
                                    10022
                                                       ₽ TCN3
                                                                            Allka
                                                                                                  . Z.A
                                                                                                                       · WNE
                       2,
                                                                                                                                            , I C
                                                                                                                                            SWNSP
20
                       3,
                                    NHR
                                                                            .TI1
                                                                                                  SITa
                                                                                                                       .714
                                                       øZR
21
                        4,
                                    ZSP
                                                       .TE1
                                                                            ,TE3
                                                                                                  , TEA
                                                                                                                                            »TEN2
22
                       5.
                                    TED2
                                                        a TIDA
                                                                            . T193
                                                                                                  .TITH
23
            Ċ
24
                         COMMON /BLK9 / XKE3
                                                                            »XKE4
                                                                                                  »XKE7
                                                                                                                       »XKF3
                                                                                                                                            .XKE9
                                                                            .XKE12
                                                                                                  .XKE13
                                                                                                                       -XKF14
25
                                    XKE 10
                                                       »XKE L1
                                                                                                                                             .YKE15
                        10
                                                                            ,XKE15
26
                                                                                                                       AXKEZE
                                                                                                  AXKE19
                       20
                                    KKE16
                                                       △XKE17
27
            C
26
                         COMMON /BLK10/ GN1(17)
                                                                            ∍FR1(17)
                                                                                                 aZ81(17)
                                                                                                                       211(17) .GN2(4)
29
                       1.
                                    A2ND(4) B2ND(4)
                                                                            ,2521(41
                                                                                                  a7622(4)
                                                                                                                       #3121(4) #7122(4)
30
            c
                         COMMON /BLK11/ ALFAZ
                                                                            .ALFAZR
                                                                                                  .DS₽Z
                                                                                                                                            .DBP7
                                                                                                                        .Wicz
31
35
                                    THETZ DEZ PRIC TOTIC RRIC PHIC
THEIC PRIC DMIC BETAIC ALFAIC ALTIC
ICDSP(2) DSPIC(2) DSPDIC(2) DSPDIC(2)
                       10
33
                       2.
34
                        3.
                                    TORPM(2) ARPMIC(2) ACAJ(2) AATIC(3) AJDIC(3) ICHEAB(2) AMEAB(C2) ACABCA AMEAB(C2) ACABCA AMEABCA AMEACA AMEABCA AMEACA AMEAC
                                                                                                                       .AJD10(2) .AJCD10(2)
33
                        40
36
                                                                                                                                            .PSASIC
                       5,
                                                                                                  .ICRSAS
                                                       ICCSAS
                                                                            .73A510
                                                                                                                       .RS4S1C
                                                                                                                                            PSABIC
37
                                    PSATIC
                       6.
                                                                                                                       ลมาเร
38
                       7,
                                    RSALIC
                                                                                                  3147a
                                                       #RS4210
                                                                            .10DA
                                                                                                                                            *10DE
                                                                            .107E
                                                                                                  PRIC
                                                                                                                       namic
39
                       8.
                                    TEIC
                                                       PERIC
                                                                                                                                            , XĐ
40
                       9,
                                    ZR
                                                       o XMB
                                                                            JALT7
41
            C
42
43
                         DIMENSION PT41(2), PT41P(2), PT4(2), PT4P(2), PLAP(2), RPM((2), RPM(P(2)
44
                        1=RPH(2)=RPMP(2)=RPMMP(2)=AJ(2)=AJ1(2)=AJ4HT(2)=AJ1(2)=AJ2(2)
45
                        2.WFPB(2).WFPB1(2).WFPB1P(2).WFAB(2).WFAB(())
46
             C
47
48
                         Do 1000 101.2
49
                         P941(1) = XKE18*PT25(1)*XKE13*RPH(1)
50
                         PT4[P(1)=,50(3,0PT41(1)=PT41P(1))
51
            ¢
52
                         PT4(1)=Z61(5)=PT4(1)+Z11(5)+PT41P(1)
53
            C
54
                         P74IP(1)=P741(1)
55
            C
56
                         RPMI(1) #XKE9@WFPB(1)+XKE11@AJ(1)+XKE12@WFAB(1)+XKE8*P*28(1)
57
                         RPHIP(I)=.5e(3.oRPH!(I)=RPH!P(I))
            C
58
59
                         IF (IMODE) 1,2000,2
60
                     1 IF ([CRPM(1).EQ.0) GO TO 2
            C
61
62
                         RPH(I)=RPH(C(I)
63
                         G0 T0 3
64
            ¢
65
                      2 RPM([)=201(4)*RPM(1)*211(4)*PPMIP(I)
66
            C
67
                     3 RPHIP(1) = RPHI(1)
68
            Ĉ
69
                         WEC1(I)=XKE4+RPH(I)
70
             C
71
                          RPMP(1) = .5*(RPMP(1)*RPM(1))
72
                         RPHMP(I)=.5+(3.*RPMM(I)=RPMMP(I))
73
74
             C
                         AJI(1)=XKE30(RPMMP(1)=RPMP(1))
75
            ¢
76
                         RPMP(I) =RPM(I)
                         RPMMP(1) = RPMM(1)
```

```
78
79
        C
               IF ([MeDE) 11.2000.12
 80
81
82
           11 IF ([CAJ(1).E0.0) G6 T6 12
        Ċ
               AJITA
                        *AJIC(I)
               AJOUT(1)=AJ(1)=AJC(1)
AJ2(1) =TEN2+AJ1(1)=TED2+(AJD1C(1)=AJCD1C(1))
AJ1(1) =AJ0UT(1)+AJ2(1)
 83
 84
 85
               Ge Ta 13
 86
        C
 87
           12 AJ1(1) =AJ1(1)+AJ1(1)+DT
AJ2(1) =701(7)+AJ2(1)+Z11(7)+AJ1(1)
 88
 89
 90
               AJOUT(1)=AJ1(1)+AJ2(1)
 91
        C
 92
               (1)JUA+(1)TUOUA=(1)UA
 93
        C
           13 WFP9[([) =XKE15*PT4([]=XKE14*PPM([)
 94
 95
               WFPB[P(1)=.5*(WFPB[(1)+WFPP[>(1))
 96
           97
 98
 99
        ¢
100
               WFP8(I) #WFPRIC(I)
101
               Ge Te 23
102
        C.
103
           22 WEPB(1) #Z01(6) *WFP8(1)+Z11(A) * JFPRIP(1)
        C
104
           23 WEPBIP(I)=WEPPI(I)
105
        c
106
               PLAP(1)*.5*(3.*PLA(1)=*LAP(1))
PT4P(1)*.5*(PT4(1)*PT4P(1))
107
108
109
        C
               WEART(1)=XKE17+PLAP(1)+XKF19+PT4P(1)
110
111
        C
112
               PLAP(1)=PLA(1)
               PT4P(1)=PT4(1)
113
        C
114
           IF (IMADE) 31,2000,32
31 IF (ICWEAS(I).EG.G) 70 TA 32
115
116
117
        C
118
               WFAB(I) #WFAEIC(I)
119
120
121
122
123
               Ge Te 33
        C
            32 WFAB(1)=261(3)+VFA9(1)+211(3)+VFABT(1)
        C
            33 T([]=XKE16+WFAB([]=XKE7+AJ([]+XKF20+PT4([]+XKE10+WFPB(])
124
125
        -1000 CONTINUE
156
        2000 RETURN
127
128
129
               END
```

```
ማ ነዋነ ም
                                                                                                                         CONTRL
            C
                           SUBROUTINE CONTRL
  2
  3
            C
                           COMMON /BLK1 / IMSDE
                                                                                                         . ITIMES
                                                                                                                                a a T
                                                                                                                                                       ANDT
                                                                                  , IDT
  A
                                      TIME
                                                                                  010
  9
                         10
                                                           o D29
  6
7
             С
                                                                                  ,va
                                                                                                         » WP
                                                                                                                                 , PR
                           COMMON ABTKS \ NB
                                                                                                                                                       ,0∂
                                                                                  , THETR
                                                                                                                                                       PHET
                                                                                                                                 PHT
                                                           ,PHIR
                                                                                                         PSIR
  8
                         ŧο
                                      R
                                                                                  PETA
                                                           , DM
                                                                                                                                                       ALFAR
                                                                                                          ALFA
                                                                                                                                 BETAR
  9
                         2 a
                                      PSI
                                                                                  ANZ
                                                                                                         . CLP
                                                                                                                                                       .CLDR
                                                           PANA
                                                                                                                                 SCLTA
10
                         Э,
                                       ALT
                                                                                                        .CLPR
.C1199
                                                                                                                                                       PUNDA
                                      CLOBP
                                                           "CLDSP
                                                                                  "CLR"
11
                         4 .
                                                                                                                                 a CNP
                                                                                                                                 CHPR
                                                                                                                                                       DELTAA
                                                                                   "CN⊓S≎
12
                         50
                                      CNDP
                                                           .CNDB₽
                                                                                                                                 ,057
                                                                                                                                                       FT27
                                                           DELTAR
13
                                      DELTAE
                                                                                   * 652
                                                                                                                                                       _RPHH(*)
                                                                                                                                 *AJE(?)
ţ 4
                                      PSP(2)
                                                           * DBP ( 2 )
                                                                                   PT25(2)
                                                                                                          *FLAI?)
<u>1</u>5
                                       7(2)
                                                           SWECT (?)
                                                                                  PREDGO
16
             Ç
                                                                                  "PSASL
17
                           COMMON /BLK4 / PSASU
                                                                                                          , QSASU
                                                                                                                                 ,OSASL
                                                                                                                                                        , ♦aiu
18
                                      OBIL
                                                                                  PSASL
                         10
                                                           ⊿RS4SU
19
             Ċ
                                                                                                                                                       aGN2(4)
                                                                                                                                s711(17)
Ž٥
                           COMMON /PLKIO/ GN1(17)
                                                                                 "FF1(17)
                                                                                                         _₹01(17)
                                                                                                                                                       a7122(4)
                                                                                 2021(4)
21
                                      A2ND(4) #92ND(4)
                                                                                                         *Ze22(4)
                                                                                                                                 .Z121(4)
22
             £
                                                                                   , ALF 47.7
23
                           COMMON /PLK11/ ALFAZ
                                                                                                          "SP7
                                                                                                                                 - NIC7
                                                                                                                                                        "NRP?
                                                                                                                                                        PHITC
24
                                       THETZ
                                                                                   PRIC
                                                                                                          0631C
                                                                                                                                 PIC
                         î o
                                                            , DEZ
                                                                                                                                 ALFAIC
25
                                       THEIC
                                                            .PSIIC
                                                                                   ្នំកូអទ្ធភ
                                                                                                          FITALC
                                                                                                                                                        ALTIC
                         2.
26
27
                                                                                                                                                       10050(2) .DS01C(2)
                                                                                 psenin(8),ichaein)
                                                                                                                                *Destote:
                         3.
                                       ICPPM(2) "SPIMIC(2) "ICAJ(2) "AJIC(2) ICMPAB(2) "MFABIC(2) ICHTER(2) "FBBIC(2) ICHTER(2) "FBBIC(2) ICHTER(2) "FBBIC(2) ICHTER(2) "FBBIC(2) ICHTER(2) "FBBIC(2) "FBBIC(
                                                                                                                                 AJPTC(2)
                         4.
                                                                                                                                                        ,FSASIC
28
                                                                                                                               laIn9SAS
                         50
29
30
                                                           .IC7545
                                                                                  #9845TG
                                                                                                        #ICESAS
                                       PSADIC
                                                                                                                                ∍PS#SIC
                                                                                                                                                        PSATIC
                         5.
                                                                                                                                 .DATIC
                         7.
                                       RSALIC
                                                            RSAZIO
                                                                                   ACOIL
                                                                                                          •DATC
                                                                                                                                                        . 1CDE
31
                                                            .DEPIO
                                                                                   - ורסד
                                                                                                          PRIC
                                                                                                                                                        , X 1
                         A,
                                       DFIC
                                                            . XM₽
32
                                       ₹8
                                                                                   ALTT
33
             C.
             C. . . N87E . . .
34
35
36
                    REFFR TO ROUTINE UTILTY FOR EXPLANATION OF VALLET
37
38
39
             1000
40
                    ROLL SAS
             C
 41
             C
42
                            PBDEG =P8/D2R
43
                            PADEGP=.5*(3.*PBDEG=P9DEGP)
44
             C
 45
                            IF (1MeDF) 1,100,2
 46
                       1 IF (|CPSAS,EQ.O) GO TO 2
 47
              C
 48
                            PSAS=PSASIC
                            POUTEPSAS
 49
90
                            60 TO 3
51
             C
 52
                       2 POUT=Z61(6) =POUT+Z[1(6) =PBDEGP
 53
              ¢
 54
                            PSAS=VALLMT(PBUT, PSASU, PSASL)
              Ċ
 55
 56
                       3 PBDEGP=PBDEG
 57
              C
 58
                     PITCH SAS ( NO IC PROVIDED )
 59
              С
 60
                            OBDEC =08/D2R
                            08121 = .5 . (3 . + QBDEG - QBTEGP)
 61
                            OBTEGROORDEG
 62
 63
                            OBJ41 =VALLMT(GB121,9B14,9B1L)
 64
              C
 63
                            OOUT1 =201(9)+30UT1+GN1(9)+(7P121=7F121P)
 66
                            98121F=08121
 67
              ¢
 68
                             15190+(C1)113+51U00+(O1)162= 51U00
 68
              C
 70
                            GOUTS =Ze1(11) +GOUT3+Z(1(11)+G3741
 71
72
              C
                            GGUT4 =Z01(12)+GGUT4+Z[1(12)+GRB4]
 73
              C
                            GOUT=GOUT; +GOUT2+GOUT3+GOUT4
 75
              ¢
 76
                             GSASEVALLMT(QBUT.QSASU,GSASL)
              C
```

```
78
           YAW SAS
 79
 80
               RBDEG #RP/D2R
RBI #.5*(3.*RBDEG#RBDEGP)
 81
               REDEGP-REDEG
 82
 83
        C
 84
               ANYP=.5+(3.+ANY-ANYP)
        C
 85
           1F (IMODE) 21,100,22
21 IF (ICRSAS,EQ.D) GO TO 22
 86
 87
 88
        C
 89
               RSAS #RSALIC+PSAZIC
 90
               REUT1=RSAIIC
 91
               PRUTZ#PSASIC
 95
               GB T9 23
 93
        C
 94
            22 ROUT1=701(13)+ROUT1+GN1(13)+(P31-RBIP)
 95
               ROUT2=ZC1(14)=ROUT2+Z11(14)+ANYP
 96
               ROUT #ROUT1+ROUT2
 97
        ¢
 98
               RSAS=VALLMT(ROUT, PSASU, RSASL)
 99
        C
100
            23 R8[P=R8]
101
               ANYPEANY
102
103
        C
           AILERON ANGLE
104
        C
105
               DAT =.5+(PSASP+PSAS)
106
               PSASPEPSAS
107
        C
           IF (IMODE) 31,100,32
31 IF (ICDA.EQ.O) Go To 32
108
109
        C
110
111
               DELTAM-DAIC
               DASPP =DELTAA-DADIC+DT
DAIP =PSAG+PSADIC+DT
112
113
114
               G6 T6 33
115
        C
116
            32 DELTA4=Z901(2)+DA0P+Z002(2)+DA9PP+7101(2)+DA1+7100(2)+DA1P
117
        C
118
               PASPPEDAGE
119
               DATE STAT
120
        C
           33 DASPEDELTAA
121
122
        C
123
           ELEVATOR ANGLE
124
        C
125
               DET =.5+(GSASP+GSAS)
126
               OSASP=OSAS
127
        C
           IF (IMODE) 41.100.42
41 IF (ICDE.EO.O) GO TO 42
128
129
        C
130
131
               DELTAE=DETC
               DESPP =DELTAE-DEDIC+DT
G8 T8 43
132
133
134
        C
135
            42 DELTAE=Z021(3)+DE0P+Z022(3)+DE0P+Z121(3)+DE1+Z122(3)+DE1P
136
        C
137
               DESPREDE OF
138
        C
139
            43 DEOP=DELTAE
140
               DEIP=DEI
141
        C
142
               DETL=DELTAE+DEZ
143
        C
144
           RUDDER ANGLE
145
        Ĉ
146
               DRI *.5+(RSASP+RSAS)
147
               RSASP=PSAS
148
        C
           TF (1MeDE) 51,100,52
51 TF (1CDR.EQ.O) G0 T0 52
149
150
151
        C
152
               DELTAR=DPIC
153
               DROPP =DELTAR-DRDIC+DT
               DRIP =RSAS=RSADIC+DT
GB TO 57
154
155
```

```
¢
                                TITLE
                                                                                                                                AIRFP"
                             SUBROUTINE AIRFRM
   3
               C
                             CUHHON ABERT A THODE
                                                                                                                                       , DY
                                                                                       #10T
                                                                                                                .ITIMES
                                                                                                                                                               TOM
                                                              .D2P
                                        TIME
                                                                                       .10
   6
               C
                             COMMON /9LK2 / UB
                                                                                       ,VB
                                                                                                                , KB
                                                                                                                                       .P?
                                                                                                                                                               , O 9
   8
                                                              PHIR
                                                                                       .THETP
                                                                                                               PSIR
                           1.
                                         29
                                                                                                                                       .PHI
                                                                                                                                                               *THET
                                         PSI
                                                                                       . BETA
                                                                                                                                                               ALFAR
                           2.
                                                               MC.
                                                                                                                                       BETAP
 10
                           3,
                                         ALT
                                                               . ANY
                                                                                       ZVA
                                                                                                                *CF6
                                                                                                                                       .CLDA
                                                                                                                                                               .CL DP
 11
                           4.
                                         CLDAP
                                                               .CL DSP
                                                                                       .CLP3
                                                                                                                .CLPB
                                                                                                                                                               CNDA
                                                                                                                                       , CNE
 12
                           5,
                                         CNOR
                                                              . CNDRP
                                                                                       CNOSP
                                                                                                                CNAB
                                                                                                                                       .CNPB
                                                                                                                                                               PELTAA
 13
                           6.
                                         DELTAE
                                                              DELTAR
                                                                                       .522
                                                                                                                •G77
                                                                                                                                       PST
                                                                                                                                                               .PT27
                                                                                                                                                               #REBN(2)
 14
                                         DSP (2)
                                                              .DBP(2)
                                                                                       PT25(2)
                                                                                                               , PL4(2)
                                                                                                                                       *AJ5(2)
 15
                           9.
                                         T(2)
                                                               .WEC1(2)
                                                                                       <u>. paq45</u>
 16
              Ċ
 17
                             COMMON /BLK3 / CDZ
                                                                                       #CDA1
                                                                                                                -0742
                                                                                                                                       .CL7
                                                                                                                                                               JOUA1
18
                                        CHZ
                                                                                       .CMA2
                                                                                                                .0776
                                                                                                                                       ,000ap
                                                                                                                                                               .cobs=
                           1.
                                                              .CHA1
                                                                                       CLETS
                                                                                                                                       , QDA=7
                                                                                                                                                               . V7
19
                                         CLEDE
                                                               CLFD4P
                                                                                                                CLFCS
                           2.
                                         AREA
20
                                                                                       ACHERD
                           3.
                                                               .XHASS
                                                                                                                SPAN
                                                                                                                                                               , XXT
                                                                                                                                       . G
                                                              .XLT
                                                                                       THX
                                                                                                               XNT
                                                                                                                                       .XIXX
                                                                                                                                                               .XTYY
15
                           4.
                                         X7T
                                                              .xixz
22
                                                                                                                                                               SCLAP
                           5.
                                                                                                               .CYSR
                                         X177
                                                                                       .CY9
                                                                                                                                       .CYP3
                                                                                       - ביווים
                                                                                                                                       , CL ခင်
                                                              CHOR
                                                                                                               , смлар
                                                                                                                                                               ,CLPAS
23
                          5.
                                        CHAD
                                                                                      .CLTES
                                                                                                                                       , CLTSPS
                                         CLRES
24
                           7.
                                                              .CLDAS
                                                                                                               .clpers
                                                                                                                                                               .CNB5
25
                                        CHPRS
                                                              CNFRS
                                                                                                               •ถบกคร<sup>ิ</sup>
                                                                                                                                       CNTAPS
                           8.
                                                                                                                                                               .CNDSPS
26
              C
27
                                                                                       .ALF470
                                                                                                                                                               ∍neP7
                            COMMON /OLKII/ ALFAZ
                                                                                                                                       AWICZ
                                                                                                               PSPT
28
                                        THETZ
                                                                                                                                       ∍R910
                          1.
                                        THETZ JUE JOINT JOINT JALEATO JALIAU
THETO JOSTIC JUNEO JOSTIC JALIAU
IODSP(2) JOSTIC(2) JOSTIC(2) JOSTIC(2) JOSTIC(2)
THETO JOSTIC(2) JOSTIC(2) JOSTIC(2) JOSTIC(2)
THETO JOSTIC JOSTIC(2) JOSTIC(2) JOSTIC(2)
THETO JOSTIC
                                                             • DE Z
                                                                                      *PBIC
                                                                                                               *CBIC
                                                                                                                                                               PHIIC
29
30
                          2.
                           Э,
                                        ICHERT (2) ARPHIC(2) . TO A J A J A J A J C C ) ICHERO (2) A PER A G ) A PER A
31
                          4.
                                                                                                                                                               .PS4517
32
                          5.
                                                                                                                                      1,109545
                                                             100543
33
                           5.
                                        PSADIC
                                                                                      . GSASIC
                                                                                                              ICPCAC
                                                                                                                                       REASTE
                                                                                                                                                               .PSATIC
                                                                                                                                                               . ICDE
34
                          7.
                                        PSALIC
                                                              #RSA216
                                                                                      .ICDA
                                                                                                               PAIC
                                                                                                                                       PARTO
                                         DFIC
                                                              .DEDIC
                                                                                      .1Cn=
                                                                                                                                       .nenic
35
                                                                                                               .PPIC
                                                                                                                                                               . YP
36
                                                              * XMP
                                                                                       ALTZ
37
38
              ¢
39
                            DIMENSION BUFFER(60)
40
              C
41
                            DATA NVAP/10/.[NTGRD/2/
42
              C
43
              C
44
                             IF (IMODE) 1-100-2
45
              C
46
              C
                     INTEGRATION ROUTINE SETUP
47
              C
48
                        1 CALL MGRATE(NVAR, DT, BUFFER, INTERD, TIME, FORER)
              ¢
50
              C
                            CALL ARDO62(ALTZ_SPOSNO.RHC)
                            RBARZ =.5*RHO*VZ*VZ
53
              C
                            GUAN1 =09ARZ+AREA/XMASS
QUAN2 =ALFAZR+VZ
55
                            GUANS #SPAN/(2.*VZ)
GUAN4 #GBARZ+GUANS
56
57
                            QUANS =AREA+SPAN/XIXX
58
                            GUAN6 =APEA+SPAN/X177
GUAN7 =APEA+CHORD/X1YY
GUAN8 =CHORD/(2.+VZ)
59
60
51
                             SUAUD+SEABOR GUANS
62
                            ZVANID=9UANG/VZ
63
64
                            QUANII=XIXZ/XIXX
65
                            OUAN12=XIXZ/XIZZ
66
                             QUANIS=1.=QUANII+QUANI2
67
                            GUAN14=2.+TSPZ
68
              C
69
                             ALFA2 MALFAZR+ALFAZR
                            CDAZ =CDZ+CBAI+ALFAZP+CDA2+ALFA2
70
                            CLAZ =CLZ+CLA1+ALFAZR
CHAZ =CHZ+CMA1+ALFAZR+CMA2+ALFA2
                             XZ#QUAN1+CDAZ=QUAN1+CLAZ+ALFA7R
                             ZZ=GUAN1+CLAZ+GUAN1+CJAZ+ALFA70
75
                            GUAN17=03AR7+CMAZ
76
              C
                            Ge Te 3
```

```
79
        C
  79
         C
            INTEGRATION
  80
         C
  88
             2 CALL GRATEN(BUFFER, URD, UR, VBD, VB, WRD, WB, PBD, PB, COD, QB, RRD, RR
  82
                             PHIDOPHIROTHED THETR PSID PSID ALTD ALTD
  83
        ¢
  84
  85
               PHI PHIR/D2R
               THET OTHERRIDER
  86
  87
               PSI DPSIR/DOR
  88
        Ċ,
  89
               DM= UB/968.
  90
               BETAROVB/VZ
  9 į
               BETA DBETAR/DER
  92
               AL FARHWH/VZ
  93
               ALFA MALFAR/DER
  94
        ¢
  95
  96
             3 SPHI #SIN(PHIR)
  97
               PHETTLETHET7 & THET
  98
               DELALTHALT-ALTZ
  99
        Ç
100
               CALL ARDC62(ALT, SPD9ND, PHR)
 101
               GBAR == 5+RH8+(VZ+(IB1++2
 102
               PGBAR =09AR=09ARZ
103
        C
104
               AWRPR -ALFAZROALFAR
105
        Ċ
106
               QUANIS=QBAROAREA/XHASS
107
               AMRPR2=AWRPR - AWRPR
108
        c
109
               CDAMCDZ CDA1 OAWRPR CDAPO AWRPP?
110
               CLA=CLZ+CLA1 a AWRPR
111
               CMA#CMZ+CMA1+AWRPR+CMA2+AWRPP2
112
        C
113
        C
            SYMMETRIC CUANTITIES
114
115
               DBPS=DBP(1)+DPP(2)
116
               DSPS=DSP(1)+DSP(2)=DUAN14
117
               75 =T(1)+T(2)
110
119
            ASYMMETRIC QUANTITIES
120
121
               DBPA=DBP([)-D8P(2)
122
               DSPA=DSP(1)=DSP(2)
123
               TA =T(1)=T(2)
124
125
           DRAG AND LIFT IN WIND AXES
126
               DRAG #9UAN15*(CDA+CDDE+DELTAE+CDDBP+DPS+CDDSP+DSP5)
XLIFT#GUAN15*(CLA+CLFDE*DELTAE+CLPDBP+DBPS+CLFDSP*DSP4
127
128
129
                              +QUANE +CLFQB+QB1
130
131
           ACCELERATIONS IN BODY AXES
132
133
               *1=XZ+XB-DRAG+XLIFT+AMRPR
134
               AZ#QUANI#(CYB*BETA+CYDR*DELTAR+RUANJ#CYRB#RE)
135
               A3-ZZ+ZB-DRAG ANRPR-XLIFT
136
               A4mQUANB+(OBAR+(CLB+SETA+CLAB+ALFA+PETA+CLDA+DELTAA+CLDR+DELTAR
137
               *CLDRP*DBPA+CLDSP*DSPA)+DHAHA*(CLDP*RP+CLFR*B))
AG=QUANG*(QBAR*(CNB*BETA+CNDA*DELYAA+CNDF+DELYAP+CNDBP*DRPA
រូវន
128
                        +CNBSP+DSPA)+QUAN4+(CHPR+PR+CHPR+PR))
140
               QUAN16=A6+XNT0TA
141
               QUANT8==VZ=RB+G+SPHT+GUAN2+PR
142
        C
143
              UBDPA1-QUANZ+QB-G+THETR+XXT+TS
144
               VBD#A2+GU4N1A
145
              WEDMAS+VZ+GE+XZT+?S
146
       £
147
               AE #QUAN7+(QUAN10+CMAD+WBD+QUAN9+CMGR+QB-CUAN17+RBAR+(CMA
146
                          OCHREADELYAE+CHDB>+73PS)1+XMD
149
       C
150
              PBD# (A4+CUAN11+QUAN16+XLTeTA)/QUAN13
151
              GBD=A5+YMT+TS
152
              RRD=QUAN12+P9D+QUAN16
153
       Ĉ
154
       ¢
           ANGLE RATES OF CHANGE
155
       C.
```

REFERENCES

- 1. Anon.: U. S. Standard Atmosphere, 1962. Available from Superintendent of Documents, U. S. Government Printing Office, Washington, D. C.
- 2. Ralston, Anthony: A First Course in Numerical Analysis. McGraw Hill, N. Y., 1965.
- 3. Neuman, Frank; and Foster, John D.: Investigation of a Digital Automatic Aircraft Landing System in Turbulence. NASA TN D-6066, 1970.

TABLE 1.- LIMITS FOR INLET PRESSURE FUNCTIONS

$$f(w_{i_c}, \delta_{sp}, X) = \sum_{i=0}^{i_{max}} \sum_{j=0}^{j_{max}} \sum_{k=1}^{k_{max}} C_{ijk}^{i} w_{i_c}^{i} \delta_{sp}^{j} X^{k}$$

Pressure Functions	imax	j _{max}	k max
$f_a(w_i, \delta_{sp})$	1	1	
$f_b(w_{i_c}, \delta_{sp})$	2	1	
$f_a(w_i, \delta_{sp}, \alpha)$	1	1	2
$f_b(w_{i_c}, \delta_{sp}, \alpha)$	1	1	2
$f_a(w_{i_c}, \delta_{sp}, \beta)$	1	1	2
$f_b(w_i, \delta_{sp}, \beta)$	2	1	2
$f_a(w_i, M)$	1		1
$f_b(w_{i_c}, M)$	1		1

TABLE 2.— LIST OF FORTRAN QUANTITIES

	Airframe				
Quantity	Fortran	Units	Description		
ů	UBD	m/sec ²	Forward acceleration		
· v	VBD	m/sec ²	Right acceleration		
ŵ	WBD	m/sec ²	Vertical acceleration		
u	UB	m/sec ²	Forward velocity		
ν	VB	m/sec ²	Lateral velocity		
w	WB	m/sec ²	Vertical velocity		
p	PBD	rad/sec ²	Roll angular acceleration		
ģ	QBD	rad/sec ²	Pitch angular acceleration		
ř	RBD	rad/sec ²	Yaw angular acceleration		
p	PB	rad/sec	Roll angular velocity		
q	QB	rad/sec	Pitch angular velocity		
r	RB	rad/sec	Yaw angular velocity		
p(o)	PBIC	deg/sec	Roll angular velocity, I.C.		
q(o)	QBIC	deg/sec	Pitch angular velocity, I.C.		
r(o)	RBIC	deg/sec	Yaw angular velocity, I.C.		
ф	PHID	rad/sec	Roll rate		
ė	THED	rad/sec	Pitch rate		
ψ	PSID	rad/sec	Yaw rate		
ф	PHIR	rad	Roll angle		
Δθ	THETR	rad	Pitch angle		
Ψ	PSIR	rad	Yaw angle		
φ	PHI	deg	Roll angle		
Δθ	THET	deg	Pitch angle		
Ψ	PSI	deg	Yaw angle		
θ _O	THETZ	deg	Pitch angle, reference condition		
е	THETTL	deg	Total pitch angle		
sin φ	SPHI	ND	Sine of roll angle		
φ(o)	PHIIC	deg	Roll angle, I.C.		
Δθ(ο)	THEIC	deg	Pitch angle, I.C.		
ψ(ο)	PSIIC	deg	Yaw angle, I.C.		

TABLE 2.- LIST OF FORTRAN QUANTITIES - Continued

<u> </u>	Airframe			
Quantity	Fortran	Units	Description	
ΔΜ	DM	ND	Mach number increment	
ΔΜ(ο)	DMIC	ND	Mach number increment, I.C.	
β	ВЕТА	deg	Sideslip angle	
α	ALFA	deg	Angle of attack	
β	BETAR	rad	Sideslip angle	
α	ALFAR	rad	Angle of attack	
β (o)	BETAIC	deg	Sideslip angle, I.C.	
α (o)	ALFAIC	deg	Angle of attack, I.C.	
^α wo	ALFAZ	deg	Angle of attack, reference condition	
α _W o	ALFAZR	rad	Angle of attack, ref. condition	
ĥ	ALTD	m/sec	Altitude rate	
h	ALT	m	Altitude	
h(o)	ALTIC	m	Altitude, I.C.	
π/180	D2R	rad/deg	Conversion factor, degrees to radians	
$^{\delta}{ m bp_{S}}$	DBPS	Cm	Symmetric inlet bypass actuator pos.	
$^{\delta}$ sp $_{f s}$, DSPS	cm	Symmetric inlet spike position	
$^{\delta}t_{s}$	TS	ND	Incremental symmetric engine thrust	
$^{\delta}$ bp $_{f a}$	DBPA	cm	Antisymmetric inlet bypass actuator position	
$^{\delta}$ sp $_{a}$	DSPA	cm	Antisymmetric inlet spike position	
$^{\delta}t_{a}$	TA	ND	Antisymmetric engine thrust	
C _D (α)	CDA	ND	Drag coefficient	
$C_{L}(\alpha)$	CLA	ND	Lift coefficient	
C _m (α)	CMA	ND	Pitching moment coefficient	
C _D (0)	CDAZ	ND	Drag coefficient, I.C.	
C ^L (0)	CLAZ	ND	Lift coefficient, I.C.	
C _m (o)	CMAZ	ND	Pitching moment coefficient, I.C.	

TABLE 2.- LIST OF FORTRAN QUANTITIES - Continued

Airframe				
Quantity	Fortran	Units	Description	
c_{D_f}	CDZ	ND	Zero order term in $C_{D}(\alpha)$	
$c_{D_{\alpha}}$	CDA1	1/rad	First order term in $C_{D}(\alpha)$	
C _{Dα} 2	CDA2	1/rad ²	Second order term in $C_{\overline{D}}(\alpha)$	
c_{L_f}	CLZ	ND	Zero order term in $C_L(\alpha)$	
$c_{ m L_{m lpha}}$	CLA1	1/rad	First order term in $C_L(\alpha)$	
c _m €	CMZ	ND	Zero order term in $C_{m}(\alpha)$	
$c_{m_{\alpha}}$	CMA1	1/rad	First order term in $C_{m}(\alpha)$	
C _{mα²} 2	CMA2	1/rad ²	Second order term in $C_{m}(\alpha)$	
D/m	DRAG	m/sec ²	Drag in stability axes	
L/m	XLIFT	m/sec ²	Lift in stability axes	
${^{\mathcal{C}}_{\mathrm{D}}}_{\delta_{\mathbf{e}}}$	CDDE	1/deg	Aerodynamic derivative	
$c_{\mathrm{D_{\delta_{bp}}}}$	CDDBP	1/cm	Aerodynamic derivative	
${^{C}}_{D_{\delta}}{_{sp}}$	CDDSP	1/cm	Aerodynamic derivative	
$^{\mathrm{C}}{}_{\mathrm{L}\delta_{\mathbf{e}}}$	CLFDE	1/deg	Aerodynamic derivative	
$^{\mathrm{C}_{\mathrm{L}_{\delta}}}$ bp	CLFDBP	1/cm	Aerodynamic derivative	
C _L _δ sp	CLFDSP	1/cm	Aerodynamic derivative	
$c_{L_{\mathbf{q}}}$	CLFQB	1/rad	Aerodynamic derivative	
q _v	QBAR	N/m²	Dynamic pressure	
Δq _v	DQBAR	N/m²	$\Delta q_{v} = q_{v} - q_{v_{Q}}$	
$q_{\mathbf{v_o}}$	QBARZ	N/m²	Dynamic pressure, reference cond.	
v	VZ	m/sec	Initial forward velocity	
s	AREA	m ²	Wing area	
m	XMASS	kg	Mass of vehicle	
С	CHORD	m	Mean aerodynamic chord	

TABLE 2.— LIST OF FORTRAN QUANTITIES - Continued

		Airfi	ame
Quantity	Fortran	Units	Description
b	SPAN	m	Wing span
ρ	RHO	kg/m ³	Air density
g	G	m/sec ²	Acceleration due to gravity
X _o	XZ	m/sec ²	Forward acceleration calculated for ref. cond.
Z _o	ZZ	m/sec ²	Downward acceleration calculated for ref. cond.
х _ь	ΧВ	m/sec ²	Biased quantity for forward acceleration
Z _b	ZB	m/sec ²	Biased quantity for downward acceleration
Мb	XMB [*]	rad/sec ²	Biased quantity for pitching angular acceleration
$x_{\delta_{\mathbf{t}}}$	XXT	m/sec ²	Forward acceleration due to thrust
z _{ot}	XZT	m/sec ²	Downward accel. due to thrust
$^{ extsf{L}_{\delta_{ extsf{t}}}}$	XLT	rad/sec ²	Rolling acceleration due to thrust
^M δt	TMX	rad/sec ²	Pitching acceleration due to thrust
^N δt	XNT	rad/sec ²	Yawing acceleration due to thrust
I _{xx}	XIXX	kg m ²	Rolling moment of inertia
Iyy	XIYY	kg m ²	Pitching moment of inertia
Izz	XIZZ	kg m ²	Yawing moment of inertia
I _{XZ}	XIXZ	kg m ²	Product of inertia
Сув	CYB	1/deg	Aerodynamic derivative
$c_{\mathbf{y}_{\delta_{\mathbf{r}}}}$	CYDR	1/deg	Aerodynamic derivative
$^{\mathrm{C}}\!\mathbf{y_r}$	CYRB	1/rad	Aerodynamic derivative
С _{ев}	CLB	1/deg	Aerodynamic derivative
C _{laß}	CLAB	1/deg ²	Aerodynamic derivative
$c_{\ell_{\delta_{\mathbf{a}}}}$	CLDA	1/deg	Aerodynamic derivative

TABLE 2.— LIST OF FORTRAN QUANTITIES - Continued

	Airframe				
Quantity	Fortran	Units	Description		
$C_{\ell_{\delta_{\mathbf{r}}}}$	CLDR	1/deg	Aerodynamic derivative		
C _{lsbp}	CLDBP	1/cm	Aerodynamic derivative		
C _l δsp	CLDSP	1/cm	Aerodynamic derivative		
C _{lr}	CLRB	1/rad	Aerodynamic derivative		
$c_{\ell_{\mathbf{p}}}$	CLPB	l/rad	Aerodynamic derivative		
C _{mα}	CMAD	1/rad	Aerodynamic derivative		
c _{mq}	СМQВ	1/rad	Aerodynamic derivative		
C _{mδ} e	CMDE	1/deg	Aerodynamic derivative		
C _{mδ} bp	CMDBP	1/cm	Aerodynamic derivative		
$c_{n_{\beta}}$	CNB	1/deg	Aerodynamic derivative		
$c_{n_{\delta_{\mathbf{a}}}}$	CNDA	1/deg	Aerodynamic derivative		
$c_{n_{\delta_{\mathbf{r}}}}$	CNDR	1/deg	Aerodynamic derivative		
c _{nδbp}	CNDBP	1/cm	Aerodynamic derivative		
c _{nδsp}	CNDSP	1/cm	Aerodynamic derivative		
$c_{n_{\mathtt{r}}}$	CNRB	1/rad	Aerodynamic derivative		
C _{np}	CNPB	1/rad	Aerodynamic derivative		
ClB	CLBS	1/deg	Aerodynamic derivative		
C ^s _{lp}	CLPBS	l/rad	Aerodynamic derivative		
C ^S ℓr	CLRBS	1/rad	Aerodynamic derivative		
C ^s o _a	CLDAS	1/deg	Aerodynamic derivative		
C ^s δ _r	CLDRS	1/deg	Aerodynamic derivative		
C ^S _{lδbp}	CLDBPS	1/cm	Aerodynamic derivative		

TABLE 2.— LIST OF FORTRAN QUANTITIES - Continued

	Airframe				
Quantity	Fortran	Units	Description		
c ^s _{ℓδsp}	CLDSPS	1/cm	Aerodynamic derivative		
$c_{n_{\beta}}^{s}$	CNBS	1/deg	Aerodynamic derivative		
C ^s _{lδsp} C ^s _{nβ} C ^s _{np} C ^s _{nr} C ^s _{ns}	CNPBS	1/rad	Aerodynamic derivative		
$C_{n_{\mathtt{r}}}^{s}$	CNRBS	1/rad	Aerodynamic derivative		
$c_{n_{\delta_a}}^s$	CNDAS	1/deg	Aerodynamic derivative		
$c_{n_{\delta_{\mathbf{r}}}}^{s}$	CNDRS	1/deg	Aerodynamic derivative		
$C_{n_{\delta h_n}}^s$	CNDBPS	1/cm	Aerodynamic derivative		
C _{nδ} sp	CNDSPS	1/cm	Aerodynamic derivative		
cos awo	CALFAZ	ND			
sin a _{wo}	SALFAZ	ND			
cos ² α _{Wo}	CALFZ2	ND			
sin ² α _{Wo}	SALFZ2	ND			
n _z	ANZ	g	Normal acceleration		
	DT	sec	Frame time		
		SAS Co	entrol		
p _{sas}	PSAS	deg	Roll SAS		
qsas	QSAS	deg	Pitch SAS		
rsas	RSAS	deg	Yaw SAS		
δa	DELTAA	deg	Aileron angle		
Δδe	DELTAE	deg	Elevator angle		
δ _r	DELTAR	deg	Rudder angle		
δ _e	DETL	deg	Total elevator angle		
k _{pp}	XKPP	sec	SAS gain		
p _{sas} (U.L.)	PSASU	deg	p _{sas} upper limit		
p _{sas} (L.L.)	PSASL	deg	P _{sas} lower limit		

TABLE 2.- LIST OF FORTRAN QUANTITIES - Continued

	SAS Control				
Quantity	Fortran	Units	Description		
1-	XKQQ	sec	SAS gain		
k _q q	XKQQ XKQ2	sec	SAS gain		
k _{q2}	·		Total q _{sas} upper limit		
q _{sas} (U.L.)	QSASU	deg			
q _{sas} (L.L.)	QSASL	deg	Total q _{sas} lower limit		
q _{sasl} (U.L.)	QBIU	deg	Lagged q _{Sas} upper limit		
q _{sas_l} (L.L.)	QBILL	deg	Lagged q _{sas} lower limit		
k _{rr}	XKRR	sec	SAS gain		
k _{rn}	XKRN	deg/g	SAS gain		
n _{yn}	ANY	g	Lateral acceleration at nose		
r _{sas} (U.L.)	RSASU	deg	r _{sas} upper limit		
r _{sas} (L.L.)	RSASL	deg	r _{sas} lower limit		
T _{p1}	TC1	sec	Time constant		
T _{r2}	TC2	sec	Time constant		
T _{q2}	TCN1	sec	Time constant		
T_{q1}	TCD1	sec	Time constant		
T _{q5}	TCN2	sec	Time constant		
Tq3	TCD21	sec	Time constant		
Tq ⁴	TCD22	sec	Time constant		
T _{r1}	TCN 3	sec	Time constant		
p	PBDEG	deg/sec	Roll angular velocity		
q	QBDEG	deg/sec	Pitch angular velocity		
r	RBDEG	deg/sec	Yaw angular velocity		
w _{na}	WNA	rad/sec	Undamped natural frequency for aileron servo		
ρ _a	ZA	ND	Damping ratio of aileron servo		
™ne	WNE	rad/sec	Undamped natural frequency for elevon servo		
ρ _e	ZE	ND	Damping ratio of elevon servo		
w _n r	WNR	rad/sec	Undamped natural frequency for rudder servo		
ρ _r	ZR	ND	Damping ratio of rudder servo		

TABLE 2.- LIST OF FORTRAN QUANTITIES - Continued

	SAS Control			
Quantity	Fortran	Units	Description	
p _{sas} (o)	PSASIC	deg/sec	I.C. for p _{sas}	
q _{sas} (o)	QSASIC	deg/sec	I.C. for q _{sas}	
δ _a (0)	DAIC	deg	I.C. for aileron	
$\delta_{\mathbf{e}}(\mathbf{o})$	DBIC	deg	I.C. for elevon	
δ _r (ο)	DRIC	deg	I.C. for rudder	
$\delta_{\mathbf{e}}(\mathbf{o})$	DEZ	deg	Reference condition for elevon	
įςas (ο)	PSADIC	deg/sec ²	I.C. for p _{sas} rate	
$\dot{\mathbf{r}}_{sas}(\mathbf{o})$	PSADIC	deg/sec ²	I.C. for r _{sas} rate	
$\dot{\delta}_{\mathbf{a}}(\mathbf{o})$	DADIC	deg/sec	I.C. for aileron rate	
$\dot{\delta}_{\mathbf{e}}(\mathbf{o})$	DEDIC	deg/sec	I.C. for elevon rate	
$\dot{\delta}_{\mathbf{r}}(\mathbf{o})$	DRDIC	deg/sec	I.C. for rudder rate	
$r_{sas_1}(o)$	RSALIC	deg	I.C. for first part of r _{sas} equation	
r _{sas₂} (o)	RSA21C	deg	I.C. for second part of r_{sas} equation	
		In	let	
$\Delta M_{ m m}$	DMT	ND	Measured increment of Mach number	
α _m	ALFAT	deg	Measured angle of attack	
β _m	ВЕТАТ	deg	Measured sideslip angle	
δ _{sp_o}	DSPZ	cm	Reference condition for inlet spike	
wico	WICZ	lb/sec	Ref. condition for inlet airflow	
$(p_s/p_{t_m})_o$	PSZ	ND	Compensation for signal pressure at reference condition	
	PT2Z	ND	Compensation for pressure recovery at reference condition	
$(p_s/p_{t_m})_c$	PSC	ND	Command signal for bypass control	
δ _{sp}	DSP	cm	Inlet spike position	
ps/pto	PS	ND	Bypass signal pressure	
$\Delta \delta_{\mathbf{bp}}$	DBP	cm	Bypass actuator position	
δ _{bp}	DBPR	cm	Total bypass actuator position	

TABLE 2.- LIST OF FORTRAN QUANTITIES - Continued

		Inl	et
Quantity	Fortran	Units	Description
δbpo	DBPZ	cm	Ref. condition for bypass actuator
Δw _{ic}	DWIC	kg/sec	Inlet airflow
	PT2	ND	Inlet pressure recovery
$\begin{pmatrix} p_{t_2}/p_{t_0} \\ \Delta(p_{t_2}/p_{t_0}) \end{pmatrix}$	PT2S	ND	Incremental pressure recovery
$f(\beta_m)$	G1	ND	Spike & bypass command function
$f_{bp}(\alpha_m, M_m)$	G2	ND	Bypass command function
$f_{bp}(n_{z_m})$	G3	ND	Bypass command function
$f_b(w_{i_c}, \delta_{sp}, \alpha)$	G4	ND	Signal pressure function
$f_b(w_{i_c}, M)$	G5	ND	Signal pressure function
$f_{sp}(n_{z_m})$	G6	in.	Spike command function
$f_{sp}(\alpha_m)$	G7	in.	Spike command function
$f_b(w_{i_c}, \delta_{sp}, \beta)$	G8	ND	Signal pressure function
$f_b(w_{i_c}, \delta_{sp})$	G9	ND	Signal pressure function
δspd	G10	in.	Unstart boundary function
$f_{c_a}(\delta_{sp_d}) + f_{c_a}(\beta)$	G11	kg/sec	Unstart boundary function
f _{ca} (a)	G12	kg/sec	Unstart boundary function
$f_{c_a}(\delta_{sp},M)+k_{i_{15}}\Delta M$	G13	kg/sec	Unstart boundary function
$f_a(w_{i_C}, \delta_{sp}, \alpha)$	G14	ND	Pressure recovery function
$f_a(w_{i_C}, \delta_{sp})$	G15	ND	Pressure recovery function
$f_a(w_{i_C}, \delta_{sp}, \beta)$	G16	ND	Pressure recovery function
f _a (w _{ic} ,M)	G17	ND	Pressure recovery function
$f_d(w_{i_c})$	G18	cm-sec/kg	Shockwave position function
f ₁ (M)	G19	ND	Incremental press. recovery function
f _{cs} (α)	G20	in.	Unstart boundary function
T_{i_1}	TI1	sec	Time constant
T_{i_2}	TI2	sec	Time constant
Ti ₄	TI4	sec	Time constant
k _i 5	XKI5	kg/cm-sec	Bypass loop gain
k _{i6}	XKI6	cm	Bypass loop gain
,			·

TABLE 2.— LIST OF FORTRAN QUANTITIES - Continued

	Inlet				
Quantity	Fortran	Units	Description		
Quantity ki10 ki12 ki15 ki16 ki19 ki20 ki23 wnsp psp TM Tg Ta fbp(\alpha_wo,0) fsp(\alpha_wo,0)	XKI10 XKI12 XKI15 XKI16 XKI19 XKI20 XKI23 WNSP ZSP TIDM TIDB TIDA G2Z G7Z ICDSP	ND cm kg/sec kg/cm-sec cm kg/sec ND rad/sec ND sec sec sec ND cm ND	Bypass command gain Spike command gain Unstart function gain Unstart function gain Spike gain Engine airflow gain Incremental pressure recovery gain Undamped natural freq. of spike servo Damping ratio of spike servo Time constant Time constant Time constant Ref. cond. for bypass command function Ref. cond. for spike command function I.C. mode control for z-transform integration I.C. mode control for z-transform		
$\delta_{\mathrm{sp}}(o)$ $\delta_{\mathrm{sp}}(o)$ $\delta_{\mathrm{bp}}(o)$	DSPIC DSPDIC DBPIC DBPDIC	cm cm/sec cm cm/sec	integrationI.C. for spike positionI.C. for spike position rateI.C. for bypass positionI.C. for bypass position rate		
		En	gine		
PLA A:	PLA AJC	deg cm ²	Power level angle Command signal for exhaust nozzle		
Aj _e N	RPMM	%	area Command incremental engine rotor speed		
N _m Pt ₄ /Pt _o	RPM PT4	% ND	Incremental engine rotor speed Primary burner pressure ratio		

TABLE 2.— LIST OF FORTRAN QUANTITIES - Continued

		Eng	ine
Quantity	Fortran	Units	Description
₩fpb	WFPB	%	Incremental primary burner fuel flow rate
₩fab	WFAB	%	Incremental afterburner fuel flow rate
A _j	AJ	cm ²	Incremental exhaust nozzle area
δt	T	%	Incremental thrust
[₩] ec	WEC	kg/sec	Incremental airflow demanded by engine
Tel	TE1	sec	Time constant
T _{e3}	TE3	sec	Time constant
T _{e4}	TE4	sec	Time constant
Ted1	TED1	sec	Time constant
T _{en2}	TEN 2	sec	Time constant
$T_{ m ed2}$	TED2	sec	Time constant
K _{e3}	XKE3	cm ² /%N	Gain
К _{еч}	XKE4	(kg/sec)/%N	Gain
K _{e7}	XKE 7	%δ _t /cm ²	Gain
K _{e8}	XKE8	ND	Gain
K _{e9}	XKE9	ND	Gain
K _{el0}	XKE10	%ot/%wfpb	Gain
K _{ell}	XKE11	1/cm ²	Gain
K _{el2}	XKE12	ND	Gain
K _{el3}	XKE13	1/%N	Gain
K _{el4}	XKE14	%wfpb/%N	Gain
K _{e15}	XKE15	^{%W} fpb	Gain
K _{e16}	XKE16	%ot/%wfab	Gain
K _{el7}	XKE17	%w _{fab} /deg	Gain
K _{el8}	XKE18	ND	Gain
K _{el9}	XKE19	%wfab	Gain
K _{e20}	XKE20	%6 _€	Gain
	ICRPM	ND	I.C. mode control for z-transform integration
N(O)	RPMIC	%N	I.C. for engine rotor speed

TABLE 2.— LIST OF FORTRAN QUANTITIES - Concluded

Engine			
Quantity	Fortran	Units	Description
	ICAJ	ND	I.C. mode control for z-transform integration
A _i (0)	AJIC	cm ²	I.C. for exhaust nozzle area
A _j (0) Å _i (0)	AJDIC	cm ² /sec	I.C. for exhaust nozzle area rate
,	AJCDIC	cm ² /sec	I.C. for command exh. noz. area rate
	I CW FPB	ND	I.C. mode control for z-transform integration
w _{fpb} (0)	WFPBIC	^{%₩} fpb	I.C. for primary burner fuel flow
·	I CW FAB	סא	I.C. mode control for z-transform integration
	WFABIC	^{%W} fab	I.C. for afterburner fuel flow

Figure 1.— Three-view drawing of the aircraft.

Figure 2.— Representation of aircraft propulsion system.

Figure 3.- Airframe simulation.

of aircraft flow angles

Figure 4.- Inlet block diagram.

Figure 5.— Engine block diagram.